

 

 

 

 

 

 

 

Rev 0.76 

January 25, 2009 

C/C++ Programming
Guide for the FIRST
Robotics Competition
Worcester Polytechnic Institute Robotics Resource Center

Brad Miller, Ken Streeter, Beth Finn, Jerry Morrison, Dan Jones, Ryan O’Meara

Contents
Getting Started ... 5

What is the WPI Robotics Library ... 6

A simple robot program ... 8

Using objects ... 9

Writing C programs ... 11

Using Wind River Workbench... 13

Setting up the environment .. 14

Creating a robot project ... 18

Building your project ... 20

Downloading the project to the cRIO .. 21

Debugging your robot program ... 22

Deploying the C/C++ Program .. 26

Creating a Robot Program ... 27

Pointers and addresses ... 30

Built-in Robot classes .. 31

SimpleRobot class ... 32

IterativeRobot class.. 33

WPI Robotics Library Conventions ... 34

RobotBase class ... 36

Watchdog timer class ... 37

Sensors... 38

Digital I/O Subsystem.. 39

Digital Inputs ... 40

Digital Outputs... 41

Accelerometer .. 42

Gyro ... 43

HiTechnicCompass .. 45

Ultrasonic rangefinder ... 46

Counter Subsystem .. 47

Counter Objects ... 48

Encoders .. 49

Geartooth Sensor ... 50

Quadrature Encoders.. 51

Analog Inputs... 53

Analog Triggers ... 55

Camera ... 56

Controlling Motors .. 60

PWM.. 61

Victor ... 62

Jaguar... 63

Servo .. 64

RobotDrive .. 65

Controlling Pneumatics.. 67

Compressor .. 68

Solenoid (Pneumatics) ... 70

Vision / Image Processing ... 71

Color Tracking ... 72

Concurrency... 76

Creating tasks... 77

Synchronized and Critical Regions .. 78

System Architecture... 80

Digital Sources... 81

Getting Feedback from the Drivers Station ... 82

Joysticks... 84

Advanced Programming Topics .. 86

Using Subversion with Workbench ... 87

Getting the WPILib Source Code .. 91

Replacing WPI Robotics Library parts .. 97

Interrupts.. 98

Creating your own speed controllers ... 99

PID Programming .. 100

Using the serial port ... 102

Relays .. 103

Customizing analog sampling .. 105

Using I2C... 106

C++ Tips .. 107

Creating an application in WorkBench .. 108

Contributing to the WPI Robotics Library... 109

Glossary ... 110

Index .. 111

 

Getting Started What is the WPI Robotics Library

Revision 0.75 – 24 January 2009 5

Getting Started

Getting Started What is the WPI Robotics Library

Revision 0.75 – 24 January 2009 6

What is the WPI Robotics Library
The WPI Robotics library is a set of C++ classes that interfaces to the hardware in the FRC
control system and your robot. There are classes to handle sensors, motors, the driver
station, and a number of other utility functions like timing and field management.

The library is designed to:

• Deal with all the low level interfacing to these components so you can concentrate on
solving this year’s “robot problem”. This is a philosophical decision to let you focus
on the higher level design of your robot rather than deal with the details of the
processor and the operating system.

• Understand everything at all levels by making the full source code of the library
available. You can study (and modify) the algorithms used by the gyro class for
oversampling and integration of the input signal or just ask the class for the current
robot heading. You can work at any level.

First, something about our new environment. The robot controller for 2009 is a National
Instruments cRIO-9074 real-time controller, or “cRIO” for short. It provides about 500x
more memory. It runs 40x faster for fixed point and even faster for floating point over the
PIC that we're used to using. The past years’ high speed sensor-interrupt logic that required
precise coding, hand optimization and lots of bugs has been replaced with dedicated
hardware (FPGA). When the library wants the number of ticks on a 1000 pulse/revolution
optical encoder it just asks the FPGA for the value. Another example is A/D sampling that
used to be done with tight loops waiting for the conversions to finish. Now sampling across
16 channels is done in hardware.

We chose C++ as a language because we felt it represents a better level of abstraction for
robot programs. C++ (when used properly) also encourages a level of software reuse that is
not as easy or obvious in C. At all levels in the library, we have attempted to design it for
maximum extensibility.

There are classes that support all the sensors, speed controllers, drivers station, etc. that
will be in the kit of parts. In addition most of the commonly used sensors that we could find
that are not traditionally in the kit are also supported, like ultrasonic rangefinders. Another
example is several robot classes that provide starting points for teams to implement their
own robot code. These classes have methods that are called as the program transitions
through the various phases of the match. One class looks like the old easyC/WPILib model
with Autonomous and OperatorControl functions that get filled in and called at the right
time. Another is closer to the old IFI default where user supplied methods are called
continuously, but with much finer control. And the base class for all of these is available for
teams wanting to implement their own versions.

Even with the class library, we anticipate that teams will have custom hardware or other
devices that we haven't considered. For them we have implemented a generalized set of

Getting Started What is the WPI Robotics Library

Revision 0.75 – 24 January 2009 7

hardware and software to make this easy. For example there are general purpose counters
than count any input either in the up direction, down direction, or both (with two inputs).
They can measure the number of pulses, the width of the pulses and number of other
parameters. The counters can also count the number of times an analog signal reaches
inside or goes outside of a set of voltage limits. And all of this without requiring any of that
high speed interrupt processing that's been so troublesome in the past. And this is just the
counters. There are many more generalized features implemented in the hardware and
software.

We also have interrupt processing available where interrupts are routed to functions in your
code. They are dispatched at task level and not as kernel interrupt handlers. This is to help
reduce many of the real-time bugs that have been at the root of so many issues in our
programs in the past. We believe this works because of the extensive FPGA hardware
support.

We have chosen to not use the C++ exception handling mechanism, although it is available
to teams for their programs. Our reasoning has been that uncaught exceptions will unwind
the entire call stack and cause the whole robot program to quit. That didn't seem like a
good idea in a finals match in the Championship when some bad value causes the entire
robot to stop.

The objects that represent each of the sensors are dynamically allocated. We have no way
of knowing how many encoders, motors, or other things a team will put on a robot. For the
hardware an internal reservation system is used so that people don't accidentally reuse the
same ports for different purposes (although there is a way around it if that was what you
meant to do).

I can't say that our library represents the only "right" way to implement FRC robot
programs. There are a lot of smart people on teams with lots of experience doing robot
programming. We welcome their input; in fact we expect their input to help make this
better as a community effort. To this end all of the source code for the library will be
published on a server. We are in the process of setting up a mechanism where teams can
contribute back to the library. And we are hoping to set up a repository for teams to share
their own work. This is too big for a few people to have exclusive control, we want this
software to be developed as a true open source project like Linux or Apache.

Getting Started A simple robot program

Revision 0.75 – 24 January 2009 8

A simple robot program
Creating a robot program has been designed to be as simple as possible while still allowing a lot of
flexibility. Here’s an example of a template that represents the simplest robot program you can create.

#include "WPILib.h"
class RobotDemo : public SimpleRobot
{
public:
 RobotDemo()
 {
 // put initialization code here
 }

 void Autonomous()
 {
 // put autonomous code here
 }

 void OperatorControl()
 {
 // put operator control code here
 }
};

START_ROBOT_CLASS(RobotDemo);
There are several templates that can be used as starting points for writing robot programs. This one,
SimpleRobot is probably the easiest to use. Simply add code for initializing sensors and anything else you
need in the constructor, code for your autonomous program in the Autonomous function, and the code for
your operator control part of the program in OperatorControl.

SimpleRobot is actually the name of a C++ class or object that is used as the base of this robot program
called RobotDemo. To use it you create a subclass which is another name for your object that is based on
the SimpleRobot class. By making a subclass, the new class, RobotDemo, inherits all the predefined
behavior and code that is built into SimpleRobot.

Getting Started Using objects

Revision 0.75 – 24 January 2009 9

Using objects
In the WPI Robotics Library all sensors, motors, driver station elements, and more are all objects. For the
most part, objects correspond to the physical things on your robot. Objects include the code and the data
that makes the thing operate. Let’s look at a Gyro. There are a bunch of operations, or methods, you can
perform on a gyro:

• Create the gyro object – this sets up the gyro and causes it to initialize itself

• Get the current heading, or angle, from the gyro

• Set the type of the gyro, i.e. its Sensitivity

• Reset the current heading to zero

• Delete the gyro object when you’re done using it

Creating a gyro object is done like this:

Gyro robotHeadingGyro(1);

robotHeadingGyro is a variable that holds the Gyro object that represents a gyro module connected to
analog port 1. That’s all you have to do to make an instance of a Gyro object.

Note: by the way, an instance of an object is the chunk of memory that holds the data
unique to that object. When you create an object that memory is allocated and
when you delete the object that memory is deallocated.

To get the current heading from the gyro, you simply call the GetAngle method on the gyro object.
Calling the method is really just calling a function that works on the data specific to that gyro instance.

float heading = robotHeadingGyro.GetAngle();

This sets the variable heading to the current heading of the gyro connected to analog channel 1.

Getting Started Using objects

Revision 0.75 – 24 January 2009 10

Creating object instances
There are several ways of creating object instances used throughout the WPI Robotics Library and all the
examples. Depending on how the object is created there are differences in how the object is referenced
and deleted. Here are the rules:

Method Creating object Using the object When the object is
deleted

Local variable
declared inside a
block or function
(or inside another
object)

Victor leftMotor(3); leftMotor.Set(1.0); Object is implicitly
deallocated when the
enclosing block is
exited

Global declared
outside of any
enclosing blocks
or functions; or a
static variable

Victor leftMotor(3); leftMotor.Set(1.0); Object is not
deallocated until the
program exits

Pointer to object

Victor *leftMotor = new Victor(3); leftMotor->Set(1.0); Object must be
explicitly deallocated
using the C++ delete
operator.

How do you decide what to use? The next section will discuss this.

Getting Started Writing C programs

Revision 0.75 – 24 January 2009 11

Writing C programs
You can also write C programs with the WPI Robotics Library using a set of C functions that map on top 

of the C++ classes and methods. To write C code: 

•  You need to create .cpp (C++ files) rather than .C files because the C wrapper functions take 
advantage of overloaded functions. This means that there are a number of functions that have 
the same name, but different argument lists. This increases the compatibility with the C++ 

programming interfaces and will make transition to C++ much easier if you choose to do that. 

• Specify port and/or slot (module) numbers in most of the functions. Behind the scenes, the 
functions allocate C++ objects that correspond to the functions that you are using. This serves 
two purposes: it ensures that you are not using a particular port for two purposes accidently 

since the C++ underlying functions track “reservations” and makes the code very similar to 
previous years where the port numbers were on each call. 

You will find that there are a few C++ higher level code options that do not exist in C. The C wrapper is a 
lower level interface to the hardware connected to the cRIO and the driver station. 

When you first use a sensor or an output device on a particular channel, the C wrapper will
automatically allocate an object to control that device. Suppose you start using a Victor motor speed 
controller on port 5. On the first use, an object is created behind the scenes that corresponds to that 
motor. Each time you refer the Victor on port 5, the code calls the underlying object to set or get values. 

When you are finished using an object, you may delete it by calling the Delete function associated with 
the object, for example DeleteVictor(). This is usually not necessary because it is unlikely that you would 
ever need to delete a sensor once it is created–the I/O devices on a robot don’t usually change while
the robot program is running. Those functions mostly exist for testing. 

Getting Started Writing C programs

Revision 0.75 – 24 January 2009 12

Example of a C program
The following C program demonstrates driving the robot for 2 seconds forward during the Autonomous 
period and driving with arcade‐style joystick steering during the Operator Control period. Notice that 
constants define the port numbers used in the program. This is a good practice and should be used for C 

and C++ programs. 

#include "WPILib.h"
#include "SimpleCRobot.h"

static const UINT32 LEFT_MOTOR_PORT = 1;
static const UINT32 RIGHT_MOTOR_PORT = 2;
static const UINT32 JOYSTICK_PORT = 1;

void Initialize(void)
{
 CreateRobotDrive(LEFT_MOTOR_PORT, RIGHT_MOTOR_PORT);
 SetWatchdogExpiration(0.1);
}

void Autonomous(void)
{
 SetWatchdogEnabled(false);
 Drive(0.5, 0.0);
 Wait(2.0);
 Drive(0.0, 0.0);
}

void OperatorControl(void)
{
 SetWatchdogEnabled(true);
 while (IsOperatorControl())
 {
 WatchdogFeed();
 ArcadeDrive(JOYSTICK_PORT);
 }
}

START_ROBOT_CLASS(SimpleCRobot);
 

Using Wind River Workbench Writing C programs

Revision 0.75 – 24 January 2009 13

Using Wind River Workbench
Wind River Workbench is a complete C/C++ Interactive Development Environment (IDE) that handles
all aspects of code development. It will help you:

• Write the code for your robot with editors, syntax highlighting, formatting, auto-completion, etc.

• Compile the source code into binary object code for the cRIO PowerPC architecture.

• Debug and test code by downloading the code to the cRIO robot controller and enabling you to
step through line by line and examine variables of the running code.

• Deploy the program so that it will automatically start up when the robot is powered on.

You can even use Subversion, a popular source code repository server to manage your code and track
changes. This is especially useful if there is more than one person doing software development.

Using Wind River Workbench Setting up the environment

Revision 0.75 – 24 January 2009 14

Setting up the environment
To use Workbench you need to configure it so that it knows about your robot and the programs that you
want to download to it. There are three areas that need to be set up.

1. The target remote system, which is the cRIO that you will use to download and debug your
programs.

2. The run or debug configuration that describes the program to be debugged and which remote
system you want to debug it on.

3. The FIRST Downloader settings that tell which program should be deployed onto the cRIO when
you are ready to load it for a competition or operation without the laptop.

Creating a Remote System in Workbench
Workbench connects to your cRIO controller and can download and remotely debug programs running on
it. In order to make that connection, Workbench needs to add your cRIO to its list of Remote Systems.
Each entry in the list tells Workbench the network address of your cRIO and has a kernel file that is
required for remote access. To create the entry for your system do the following steps.

Note: The “Reset connected Target” (reboot the server) command
doesn’t work reliably and other features seem to have issues unless the
“Console out” switch on the cRIO is set to on. Normally this switch

enables the console output for viewing with a serial port, but leaving it
on even if there is no serial cable connected improves system reliability.

Using Wind River Workbench Setting up the environment

Revision 0.75 – 24 January 2009 15

Right-click in the empty area in
the “Remote Systems” window.
Select “New Connection”.

In the “Select Remote System
Type” window select “Wind
River VxWorks 6.x Target
Server Connection” and click
“Next”.

Using Wind River Workbench Setting up the environment

Revision 0.75 – 24 January 2009 16

Fill out the “Target Server
Options” window with the IP
address of your cRIO. It is
usually 10.x.y.2 where x is the
first 2 digits of your 4 digit
team number and y is the last
two digits. For example, team
190 (0190) would be 10.1.90.2.
You must also select a Kernel
Image file. This is located in the
WindRiver install directory in
the WPILib top level directory.
This is typically called
“C:\WindRiver\WPILib\VxWor
ks”.

Using Wind River Workbench Setting up the environment

Revision 0.75 – 24 January 2009 17

If the cRIO is turned on and
connected you will see the
target server entry populated
with the tasks currently running.

Using Wind River Workbench Creating a robot project

Revision 0.75 – 24 January 2009 18

Creating a robot project
The easiest way to create your own project for your robot is to start with one of the existing templates:

• SimpleRobotTemplate

• IterativeRobotTemplate (coming soon)

In both cases the templates are based on the RobotBase class and have some of the functions overridden
to change the behavior. Additional templates can be implemented that implement other behaviors for
example event driven models.

Follow these steps to create a sample project. In this case the sample is the SimpleRobotTemplate, but
you can use any of the provided samples.

click “File” from the main
menu, then “New”, then
“Example…”. From the
example project window
select “VxWorks
Downloadable Kernel
Module Sample Project”,
and then click “Next”.

Using Wind River Workbench Creating a robot project

Revision 0.75 – 24 January 2009 19

Select Simple Robot
Template from Sample
Project Template window.
Notice that a description of
the template is displayed in
the Information window.
Click “Finish” and a project
will be created in your
workspace that you can edit
into your own program.

Using Wind River Workbench Building your project

Revision 0.75 – 24 January 2009 20

Building your project
The project is built by right-clicking on the project name in the Project Explorer window and selecting
“Build project” or “Rebuild project” from the popup context menu. This will cause Workbench to
compile and link the project files into a .OUT executable file that may be either deployed or downloaded
to the cRIO.

Another way of building the project is to automatic rebuild feature of Workbench. Whenever a file in the
project is saved, a build will automatically be started to keep the project up to date. To enable this feature:

Select “Window”, then “Preferences”. In the Preferences panel, expand “General”, then “Workspace” and
check the “Build automatically” option. A file can quickly be saved after editing by using the keyboard
shortcut, Ctrl-S. Or save all open files at once using the Save All shortcut, Ctrl-Shift-S.

It’s handy to turn on “Save automatically before build.” Then Workbench will always build with your
latest changes to all files, saving lots of puzzlement.

Using Wind River Workbench Downloading the project to the cRIO

Revision 0.75 – 24 January 2009 21

Downloading the project to the cRIO
There are two ways of getting your project into the cRIO:

1. Using a Run/Debug Configuration in Workbench. This loads the program into the cRIO RAM
memory and allows it to run either with or without the debugger. When the robot is rebooted, the
program will no longer be in memory.

2. Deploy the program through the FIRST Downloader option in Workbench. In this case the
program will be written to the flash disk inside the cRIO and will run whenever it is rebooted
until it is Undeployed (deleted from flash). This is the option to take a finished program and make
it available for a match – so that it will run without an attached computer to always load it.

The deployed code only runs on reboot when the LabView Runtime goes through a list of programs to
run on startup. Those programs are loaded from the flash disk on the cRIO. On each boot it tries to load
the deployed program via a fixed filename (regardless of what you call the program). The Downloader
“deploys” your program by copying it to the cRIO’s flash disk and can “undeploy” it by deleting it from
the flash disk.

When you Run or Debug the program from Workbench, Workbench loads the program directly into cRIO
RAM and runs from there.

If you have a robot program starting from flash disk and thus starting up automatically in the background
then you also load one for debugging, things get very confusing.

It is also sometimes advantageous to reboot between debugging sessions. Sometimes things don't get
completely cleaned up even if you try to unload the program. We're working on that. You can reboot
remotely by right-clicking on the connection in the "Remote Systems" tab in Workbench and selecting
"Reset connected Target". It takes about 15 seconds to reboot.

The steps for debugging if there is already a program deployed to the cRIO:

1. Undeploy

2. Reboot the cRIO

3. Do debug in Workbench

To deploy a program to the cRIO:

1. Download

2. Reboot the cRIO

Using Wind River Workbench Debugging your robot program

Revision 0.75 – 24 January 2009 22

Debugging your robot program
You can monitor, control and manipulate processes using the debugger. This section will describe how to
set up a debug session on a robot control program for the cRIO. (See the Wind River Workbench User’s
Guide for complete documentation on how to use the debugger: Help > Help Contents > Wind River
Documentation > Guides > Host Tools > Wind River Workbench User’s Guide.)

To run a program that derives from one of the WPILib robot base classes, such as SimpleRobot.cpp or
IterativeRobot.cpp, a macro called START_ROBOT_CLASS is used that starts one task that just spawns
the robot task with the correct run options. See SimpleDemo or IterativeDemo for examples. This makes
it necessary to set up Debug to attach to the spawned robot task instead of the initial task.

To start a debug session, connect to the target and click on the bug icon or right click the project and
select “Debug Kernel Task…” The Debug dialog is displayed.

 

Figure 1: Setting the entry point on a Debug Configuration for a robot program.

Select as the entry point the function FRC_UserProgram_StartupLibraryInit. (If you have more than one
of them, as in the figure above, you might want to give them names that are distinct in the visible part of
the list.) On the debug options tab, select “Break on Entry” and “Automatically attach spawned Kernel

Using Wind River Workbench Debugging your robot program

Revision 0.75 – 24 January 2009 23

Tasks”. This tells the debugger to stop at the first instruction, and to make the spawned task (your robot
task) available to debug.

 

Figure 2: Setting the “Automatically attach spawned Kernel Tasks” option ensures that you will be able to debug the entire 
program including any tasks that it creates. The WPI Robotics Library automatically starts your program in a new task.

The other tabs can normally be left at default settings.

When the “Debug” button is selected, several things happen. Your Workbench display changes to the
Debug Perspective, which has views Debug, Breakpoints and Variables along the right side. The task is
kicked off and stops in the first instruction, in FRC_UserProgram_StartupLibraryInit. At this
point double-click in the left margin of the source code window (VisionDemo.cpp, below) to set a
breakpoint in your user program. A little blue circle indicates the breakpoint. Select the “Resume” icon
(the green arrow) to continue until the first breakpoint is reached.

Using Wind River Workbench Debugging your robot program

Revision 0.75 – 24 January 2009 24

The Debug view shows all processes and threads running under the debugger. Selecting the stack frame
will show the current instruction pointer and source code (if available) for the process selected. When
your breakpoint is reached, make sure your program is selected in the task list, and your source code is
displayed with a program pointer. You can continue through your code using “Resume”, “Step Into”,
“Step Over” and “Step Return”. If you see assembly code displayed this is because you have gone into a
lower level of code where the source is not available. A “Step Return” will bring you back up a level.

The lower right view shows the current value of variables. To see a variable that is not displayed, select
the “Expressions” tab and enter the variable name. If it is in scope, its current value will be shown.

To stop debugging, you may disconnect or terminate the process. Disconnecting detaches the debugger
but leaves the process running in its current state. Terminating the process kills it on the target.

Troubleshooting:

Source code displayed is out of sync with cursor when debugging: The source has changed since it
was loaded onto the cRIO. Rebuild the project (build clean) and make sure included projects are up to
date.

Robot program not visible in the Debug View: Make sure that “Automatically attach spawned Kernel
Tasks” option is set. The first stop happens before your program is started. It will appear after you
“Resume.”

Using Wind River Workbench Debugging your robot program

Revision 0.75 – 24 January 2009 25

Getting printf/cout output on the PC
There are three ways to see output from printf/cout in Workbench, all with advantages and 
disadvantages: 

Connect a serial cable between the computer 
and robot controller 

Always works over 
system reboots 

Robot must be tethered 

Use a network Target Console. To get that, 
right‐click on the remote system, then "Target 
Tools", then "Target Console". This will create 

a console window over the network. 

Gets everything with no 
tether cable 

Goes away on reboot 

Allocate a console. In the Run menu, select 
Open Run Dialog… or Open Debug Dialog… to 
open the run or debug configuration. Select 

your Kernel Task 
FRC_UserProgram_StartupLibraryInit in the 
left pane. Then look at the "Common" tab. 

There check the "Allocate Console" checkbox. 

Survives reboots  Seems to only print current 
task output 

 

Using Wind River Workbench Deploying the C/C++ Program

Revision 0.75 – 24 January 2009 26

Deploying the C/C++ Program
Deploying a program to the cRIO copies it to flash memory so that it will automatically start when the 

robot is turned on. The FIRST Downloader plug‐in for Workbench has commands to Download (i.e. 
deploy) the program to the cRIO and Undeploy (i.e. delete) the program from the cRIO. 

Note: Don’t try to debug a robot program as described above while there is a deployed robot program 
that automatically runs when the cRIO boots. 

To set up Workbench to deploy your program use the menu command “Window > Preferences… > FIRST 

Downloader Preferences”.  

 

Fill in your team number and the .OUT file for your project that should be loaded. The .OUT file will 
typically be in the PPC603gnu directory in the Workbench workspace directory for your project—this 

assumes you already built it. 

Once this is set up, to deploy the project use the menu command “FIRST > Download”. The will copy the 
program to the correct filename and directory in the cRIO. The next time the cRIO is restarted, the 
program will start running. 

To undeploy the project, use the menu command “FIRST > Undeploy”. 

Creating a Robot Program Deploying the C/C++ Program

Revision 0.75 – 24 January 2009 27

Creating a Robot Program
Now consider a very simple robot program that has these characteristics:

Autonomous period Drives in a square pattern by driving half speed for 2 seconds to make a side then
turns 90 degrees. This is repeated 4 times.

Operator Control
period

Uses two joysticks to provide tank steering for the robot.

The robot specifications are:

Left drive motor PWM port 1
Right drive motor PWM port 2
Joystick driver station joystick port 1

Starting with the template for a simple robot program we have:

#include "WPILib.h"
class RobotDemo : public SimpleRobot
{
public:
 RobotDemo()
 {
 // put initialization code here
 }

 void Autonomous()
 {
 // put autonomous code here
 }

 void OperatorControl()
 {
 // put operator control code here
 }
};

START_ROBOT_CLASS(RobotDemo);

Now add objects to represent the motors and joystick.

The robot drive object with motors in ports 1 and 2, and two joystick objects are declared using the
following code:

 RobotDrive drive(1, 2);
 Joystick leftStick(1);
 Joystick rightStick(2);

Creating a Robot Program Deploying the C/C++ Program

Revision 0.75 – 24 January 2009 28

For the example and to make the program easier to understand, we’ll disable the watchdog timer. This is a
feature in the WPI Robotics Library that helps ensure that your robot doesn’t run off out of control if the
program malfunctions.

RobotDemo()
{
 GetWatchdog().SetEnabled(false);
}

Now the autonomous part of the program can be constructed that drives in a square pattern:

void Autonomous()
{
 for (int i = 0; i < 4; i++)
 {
 drivetrain.Drive(0.5, 0.0); // drive 50% of full forward with 0% turn
 Wait(2.0); // wait 2 seconds
 drivetrain.Drive(0.0, 0.75); // drive 0% forward and 75% turn
 }
 Drivetrain.Drive(0.0, 0.0); // drive 0% forward, 0% turn (stop)
}

Now look at the operator control part of the program:

void OperatorControl()
{
 while (1) // loop forever
 {
 drivetrain.TankDrive(leftStick, rightStick);// drive with the joysticks
 Wait(0.005);
 }
}

Putting it all together we get this pretty short program that accomplishes some autonomous task and
provides operator control tank steering:

Creating a Robot Program Deploying the C/C++ Program

Revision 0.75 – 24 January 2009 29

#include "WPILib.h"

class RobotDemo : public SimpleRobot
{
 RobotDrive drivetrain(1, 2);
 Joystick leftStick(1);
 Joystick rightStick(2);

public:
 RobotDemo()
 {
 GetWatchdog().SetEnabled(false);
 }

 void Autonomous()
 {
 for (int i = 0; i < 4; i++)
 {
 drivetrain.Drive(0.5, 0.0); // drive 50% forward, 0% turn
 Wait(2.0); // wait 2 seconds
 drivetrain.Drive(0.0, 0.75); // drive 0% forward and 75% turn
 Wait(0.75); // turn for almost a second
 }
 drivetrain.Drive(0.0, 0.0); // stop the robot
 }

 void OperatorControl()
 {
 while (1) // loop forever
 {
 drivetrain.Tank(leftStick, rightStick); // drive with the joystick
 Wait(0.005);
 }
 }
};

START_ROBOT_CLASS(RobotDemo);

Although this program will work perfectly with the robot as described, there were some details that were
skipped:

• In the example drivetrain,leftStick and rightStick are member objects of the
RobotDemo class. In the next section pointers will be introduced as an alternate technique.

• The drivetrain.Drive() method takes two parameters, a speed and a turn direction. See the
documentation about the RobotDrive object for details on how that speed and direction really
work.

Creating a Robot Program Pointers and addresses

Revision 0.75 – 24 January 2009 30

Pointers and addresses
There are two ways of declaring objects: either as an instance of the object or a pointer to the
object. In the case of the instance the variable represents the object, and it is created at the time
of the declaration. In the case of a pointer you are only creating the space to store the address of
the object, but the object remains uncreated. With pointers you have to create the object using the
new operator. Look at these two snippets of code to see the difference.

Joystick stick1(1); // this is an instance of a Joystick object stick1
stick1.GetX(); // instance dereferenced using the dot (.) operator
bot->ArcadeDrive(stick1); // and can be passed to methods as a reference

Joystick *stick2; // a pointer to an uncreated Joystick object
stick2 = new Joystick(1); // creates the instance of the Joystick object
stick2->GetX(); // pointers are dereferenced with the arrow (->)
bot->ArcadeDrive(stick2); // and can be passed as pointers (notice, no &)
delete stick2; // delete the object when you’re done with it

The ArcadeDrive method in the library is taking advantage of a feature of C++ called function
overloading. This allows us to have two methods with the same name that differ by the argument
list. In the first ArcadeDrive(stick1), the variable stick1 is passed as a reference to a Joystick
object. In the second ArcadeDrive(stick2), it is being passed as a pointer to a Joystick object.
There are actually two methods in the RobotDrive object, both called ArcadeDrive that each take
a different type of argument. The cool thing is that the compiler figures out which one to call.
The library is built this way to let it adapt to the style of programmers that prefer to use pointers
while at the same time accommodating those who prefer to use references. 

Creating a Robot Program Built‐in Robot classes

Revision 0.75 – 24 January 2009 31

Built-in Robot classes
There are several built-in robot classes that will help you quickly create a robot program. These are:

Table 1: Built‐in robot base classes to create your own robot program. Subclass one of these depending on your 
requirements and preferences. 

Class name Description
SimpleRobot This template is the easiest to use and is designed for writing a straight-line

autonomous routine without complex state machines.
Pros:

• Only three places to put your code: the constructor for initialization, the
Autonomous method for autonomous code and the OperatorControl method
for teleop code.

• Sequential robot programs are trivial to write, just code each step one after
another.

• No state machines required for multi-step operations, the program can
simply do each step sequentially.

Cons:
• Automatic switching between Autonomous and Teleop code segments is

not easy and may require rebooting the controller.
• The Autonomous method will not quit running until it exits, so it will

continue to run through the TeleOp period unless it finishes by the end of
the Autonomous period (so be sure to make your loops check that it’s still
the autonomous period).

IterativeRobot This template gives additional flexibility in the code for responding to various field

state changes (autononmous, teleoperated, disabled) in exchange for additional
complexity in the program design. It is based on a set of methods that are repeatedly
called based on the current state of the field. The intent is that each method is called;
it does some processing, and then returns. That way, when the field state changes, a
different method can be called as soon as the change happens.
Pros:

• Can have very fine-grain control of field state changes, especially if
practicing and retesting the same state over and over.

Cons:
• More difficult to write action sequences that unfold over time. It requires

state variables to remember what the robot is doing from one call the next.
RobotBase The base class for the above classes. This provides all the basic functions for field

control, the user watchdog timer, and robot status. This class should be extended to
have the required specific behavior.

Creating a Robot Program SimpleRobot class

Revision 0.75 – 24 January 2009 32

SimpleRobot class
The SimpleRobot class is designed to be the base class for a robot program with straightforward
transitions from Autonomous to Operator Control periods. There are three methods that are usually filled
in to complete a SimpleRobot program.

Table 2: SimpleRobot class methods that are called as the match moves through each phase. 

Method What it does
the Constructor
(method with the
same name as the
robot class)

Put all the code in the constructor to initialize sensors and any program variables
that you have. This code runs as soon as the robot is turned on, but before it is
enabled. When the constructor exits, the program waits until the robot is enabled.

Autonomous() All the code that should run during the autonomous period of the game goes in the
Autonomous method. The method is allowed to run to completion and will not be
interrupted at the end of the autonomous period. If the method has an infinite loop,
it will never stop running until the entire match ends. When the method exits, the
program will wait until the start of the operator control period.

OperatorControl() Put code in the OperatorControl method that should run during the operator control
part of the match. This method will be called after the Autonomous() method has
exited and the field has switched to the operator control part of the match. If your
program exits from the OperatorControl() method, it will not resume until the robot
is reset.

Creating a Robot Program IterativeRobot class

Revision 0.75 – 24 January 2009 33

IterativeRobot class
The IterativeRobot class divides your program up into methods that are repeatedly called at various times
as the robot program executes. For example, the AutonomousContinuous() method is called continually
during the autonomous period. When the playing field (or the switch on the DS) changes to operator
control, then the TeleopInit() first, then the TeleopContinuous() methods are called continuously.

WindRiver Workbench has a built in sample robot program based on the Iterative Robot base class. If you
would like to use it, follow the instructions from the previous section, except select “Iterative Robot Main
Program”. The project will be created in your workspace.

The methods that the user fills in when creating a robot based on the IterativeRobot base class are:

Table 3: IterativeRobot class methods that are called as the match proceeds through each phase. 

Method name Description
RobotInit Called when the robot is first turned on. This is a substitute for using the

constructor in the class for consistency. This method is only called once.
DisabledInit Called when the robot is first disabled
AutonomousInit Called when the robot enters the autonomous period for the first time. This is

called on a transition from any other state.
TeleopInit Called when the robot enters the teleop period for the first time. This is called

on a transition from any other state.
DisabledPeriodic Called periodically during the disabled time based on a periodic timer for the

class.
AutonomousPeriodic Called periodically during the autonomous part of the match based on a

periodic timer for the class.
TeleopPeriodic Called periodically during the teleoperation part of the match based on a

periodic timer for the class.
DisabledContinuous Called continuously while the robot is disabled. Each time the program

returns from this function, it is immediately called again provided that the
state hasn’t changed.

AutonomousContinuous Called continuously while the in the autonomous part of the match. Each
time the program returns from this function, it is immediately called again
provided that the state hasn’t changed.

TeleopContinuous Called continuously while in the teleop part of the match. Each time the
program returns from this function, it is immediately called again provided
that the state hasn’t changed.

The three Init methods are called only once each time state is entered. The Continuous methods are called
repeatedly while in that state, after calling the appropriate Init method. The Periodic methods are called
periodically while in a given state where the period can be set using the SetPeriod method in the
IterativeRobot class. The periodic methods are intended for timebased algorithms like PID control. Any
of the provided methods will be called at the appropriate time so if there is a TeleopPeriodic and
TeleopContinous, they will both be called (although at different rates).

Jerry Morrison � 1/10/09 9:20 PM
Comment: if the robot enters autonomous mode 
a second time, won't this get called again? 

Creating a Robot Program WPI Robotics Library Conventions

Revision 0.75 – 24 January 2009 34

WPI Robotics Library Conventions
This section documents some conventions that were used throughout the library to standardize on its 

use and make things more understandable. Knowing these should make your programming job much 
easier. 

Class, method, and variable naming
Names of things follow the following conventions: 

Type of name  Naming rules  Examples 

Class name  Initial upper case letter then camel case 
(mixed upper/lower case) except acronyms 

which are all upper case 

Victor, SimpleRobot, PWM 

Method name  Initial upper case letter then camel case  StartCompetition, Autonomous, 
GetAngle 

Member variable  “m_” followed by the member variable name 

starting with a lower case letter then camel 
case 

m_deleteSpeedControllers, 

m_sensitivity 

Local variable  Initial lower case  targetAngle 

Macro  All upper case with _ between words, but you 

should use const values and inline function 
instead of macros. 

DISALLOW_COPY_AND_ASSIGN 

Constructors with slots and channels
Most constructors for physical objects that connect to the cRIO take the port number in the constructor. 
The following conventions are used: 

• Specification of an I/O port consists of the slot number followed by the channel number. The 
slot number is the physical slot on the cRIO chassis that the module is plugged into. For 

example, for Analog modules it would be either 1 or 2. The channel number is a number from 1 
to n, where n is the number of channels of that type per I/O module. 

• Since many robots can be built with only a single analog or digital module, there is a shorthand 

method of specifying port. If the port is on the first (lowest numbered) module, the slot 
parameter can be left out. 

Examples are: 

Creating a Robot Program WPI Robotics Library Conventions

Revision 0.75 – 24 January 2009 35

 Jaguar(UINT32 channel); // channel with default slot (4)
 Jaguar(UINT32 slot, UINT32 channel); // channel and slot
 Gyro(UINT32 slot, UINT32 channel); // channel with explicit slot
 Gyro(UINT32 channel); // channel with default slot (1)

Sharing inputs between objects
WPILib constructors for objects generally use port numbers to select input and output channels on cRIO 

modules. When you use a channel number in an object like an encoder, a digital input is created inside 
the encoder object reserving the digital input channel number.  

Creating a Robot Program RobotBase class

Revision 0.75 – 24 January 2009 36

RobotBase class
The RobotBase class is the subclass for the SimpleRobot and IterativeRobot classes. It is intended that if
you decide to create your own type or robot class it will be based on RobotBase. RobotBase has all the
methods to determine the field state, set up the watchdog timer, communications, and other housekeeping
functions.

To create your own base class, create a subclass of RobotBase and implement (at least) the
StartCompetition() method.

For example, the SimpleRobot class definition looks (approximately) like this:

class SimpleRobot: public RobotBase
{
public:
 SimpleRobot();
 virtual void Autonomous();
 virtual void OperatorControl();
 virtual void RobotMain();
 virtual void StartCompetition();

private:
 bool m_robotMainOverridden;
};

It overrides the StartCompetition() method that controls the running of the other methods and it adds
the Autonomous(), OperatorControl(), and RobotMain() methods. The StartCompetition
method looks (approximately) like this:

void SimpleRobot::StartCompetition()
{
 while (IsDisabled()) Wait(0.01); // wait for match to start
 if (IsAutonomous()) // if starts in autonomous
 {
 Autonomous(); // run user-supplied Autonomous code
 }
 while (IsAutonomous()) Wait(0.01); // wait until end of autonomous period
 while (IsDisabled()) Wait(0.01); // make sure robot is enabled
 OperatorControl(); // start user-supplied OperatorControl
}

It uses the IsDisabled() and IsAutonomous() methods in RobotBase to determine the field state and
calls the correct methods as the match is sequenced.

Similarly the IterativeRobot class calls a different set of methods as the match progresses.

Creating a Robot Program Watchdog timer class

Revision 0.75 – 24 January 2009 37

Watchdog timer class
The Watchdog timer class helps to ensure that the robot will stop operating if the program does something
unexpected or crashes. A watchdog object is created inside the RobotBase class (the base class for all the
robot program templates). Once created, the robot program is responsible for “feeding” the watchdog
periodically by calling the Feed() method on the Watchdog. Failure to feed the Watchdog results in all
the motors and pneumatics stopping on the robot.

The default expiration time for the Watchdog is 500ms (0.5 second). Programs can override the default
expiration time by calling the SetExpiration(expiration-time-in-seconds) method on the Watchdog.

Use of the Watchdog timer is recommended for safety, but it can be disabled. For example, during the
autonomous period of a match the robot needs to drive for drive for 2 seconds then make a turn. The
easiest way to do this is to start the robot driving, and then use the Wait function for 2 seconds. During
the 2 second period when the robot is in the Wait function, there is no opportunity to feed the Watchdog.
In this case you could disable the Watchdog at the start of the Autonomous() method and re-enable it at
the end. Alternatively a longer watchdog timeout period would still provide much of the protection from
the watchdog timer.

void Autonomous()
{
 GetWatchdog().SetEnabled(false); // disable the watchdog timer
 Drivetrain.Drive(0.75, 0.0); // drive straight at 75% power
 Wait(2.0); // wait for 2 seconds
 .
 .
 .
 GetWatchdog().SetEnabled(true); // reenable the watchdog timer
}

You can call GetWatchdog() from any of the methods inside one of the robot program template objects.

Sensors Watchdog timer class

Revision 0.75 – 24 January 2009 38

Sensors
The WPI Robotics Library includes built in support for all the sensors that are supplied in the FRC kit of
parts as well as many other commonly used sensors available to FIRST teams through industrial and
hobby robotics outlets.

Types of supported sensors
The library natively supports sensors of a number of categories shown below.

Category Supported sensors
Wheel/motor position
measurement

Geartooth sensors, encoders, analog encoders, and potentiometers

Robot orientation Compass, gyro, accelerometer, ultrasonic rangefinder
Generic pulse output Counters

In the past, high speed counting of pulses from encoders or accurate timing of ultrasonic rangefinders was
implemented in complex real-time software and caused a number of problems as system complexity
increased. On the cRIO, the FPGA implements all the high speed measurements through dedicated
hardware ensuring accurate measurements no matter how many sensors and motors are added to the
robot.

In addition there are many features in the WPI Robotics Library that make it easy to implement many 

other types of sensors not directly supported with classes. For example general purpose counters can 
measure period and count from any device generating output pulses. Another example is a generalized 
interrupt facility to catch high speed events without polling and potentially missing them. 

Sensors Digital I/O Subsystem

Revision 0.75 – 24 January 2009 39

Digital I/O Subsystem

The NI 9401 digital I/O module has 32 GPIO lines. Through the circuits in the digital breakout board
these map into 10 PWM outputs, 8 Relay outputs for driving Spike relays, the signal light, an I2C port,
and 14 bidirectional GPIO lines.

The basic update rate of the PWM lines is a multiple of approximately 5 ms. Jaguar speed controllers
update at slightly over 5ms, Victors update 2X (slightly over 10ms), and servos update at 4X (slightly
over 20ms).

Sensors Digital Inputs

Revision 0.75 – 24 January 2009 40

Digital Inputs
Digital inputs are typically used for switches. The DigitalInput object is typically used to get the current 

state of the corresponding hardware line: 0 or 1. More complex uses of digital inputs such as encoders 
or counters are handled by using those classes. Using these other supported device types (encoder, 
ultrasonic rangefinder, gear tooth sensor, etc.) don’t require a digital input object to be created. 

The digital input lines are shared from the 14 GPIO lines on each Digital Breakout Board. To use one of 

those lines as an input the direction must be set. Creating an instance of a DigitalInput object will 
automatically set the direction of the line to input. 

Digital input lines have pull‐up resistors so an unconnected input will naturally be high. If a switch is 
connected to the digital input it should connect to ground when closed. The open state of the switch will 

be 1 and the closed state will be 0. 

Sensors Digital Outputs

Revision 0.75 – 24 January 2009 41

Digital Outputs
Digital outputs are typically used to run indicators or interface with other electronics. The digital outputs 

share the 14 GPIO lines on each Digital Breakout Board. Creating an instance of a DigitalOutput object 
will automatically set the direction of the GPIO line to output. 

Sensors Accelerometer

Revision 0.75 – 24 January 2009 42

Accelerometer
The accelerometer typically provided in the kit of parts is a two-axis accelerometer. It can provide
acceleration data in the X and Y axes relative to the circuit board. In the WPI Robotics Library you
treat it as two devices, one for the X axis and the other for the Y axis. This is to get better
performance if your application only needs to use one axis. The accelerometer can be used as a tilt
sensor – actually measuring the acceleration of gravity. In this case, turning the device on the side
would indicate 1000 milliGs or one G.

Figure 3: FRC supplied 2 axis accelerometer board connected to a robot 

Sensors Gyro

Revision 0.75 – 24 January 2009 43

Gyro
Gyros typically supplied by FIRST in the kit of parts are provided by Analog Devices and are actually
angular rate sensors. The output voltage is proportional to the rate of rotation of the axis normal to the
gyro chip top package surface. The value is expressed in mV/°/second (degrees/second or rotation
expressed as a voltage). By integrating (summing) the rate output over time the system can derive the
relative heading of the robot.

Another important specification for the gyro is its full scale range. Gyros with high full scale ranges can
measure fast rotation without “pinning” the output. The scale is much larger so faster rotation rates can be
read, but there is less resolution since a much larger range of values is spread over the same number of
bits of digital to analog input. In selecting a gyro you would ideally pick the one that had a full scale
range that exactly matched the fastest rate of rotation your robot would ever experience. That would yield
the highest accuracy possible, provided the robot never exceeded that range.

Using the Gyro class
The Gyro object is typically created in the constructor of the RobotBase derived object. When the Gyro
object is instantiated it will go through a calibration period to measure the offset of the rate output while
the robot is at rest. This means that the robot must be stationary while this is happening and that the gyro
is unusable until after it has completed the calibration.

Once initialized, the GetAngle() method of the Gyro object will return the number of degrees of
rotation (heading) as a positive or negative number relative to the robot’s position during the calibration
period. The zero heading can be reset at any time by calling the Reset() method on the Gyro object.

Setting the gyro sensitivity
The Gyro class defaults to the settings required for the 80°/sec gyro that was delivered by FIRST in the
2008 kit of parts.

To change gyro types call the SetSensitivity(float sensitivity) method and pass it the
sensitivity in volts/°/sec. Just be careful since the units are typically specified in mV (volts / 1000) in the
spec sheets. A sensitivity of 12.5 mV/°/sec would require a SetSensitivity() parameter value of
0.0125.

Example
This program causes the robot to drive in a straight line using the gyro sensor in combination with the 
RobotDrive class. The RobotDrive.Drive method takes the speed and the turn rate as arguments; where 
both vary from ‐1.0 to 1.0. The gyro returns a value that varies either positive or negative degrees as the 

robot deviates from its initial heading. As long as the robot continues to go straight the heading will be 
zero. If the robot were to turn from the 0 degree heading, the gyro would indicate this with either a 
positive or negative value. This example uses the gyro to turn the robot back on course using the turn 

parameter of the Drive method. 

Sensors Gyro

Revision 0.75 – 24 January 2009 44

class GyroSample : public SimpleRobot
{
 RobotDrive myRobot; // robot drive system
 Gyro gyro;
 static const float Kp = 0.03;

public:
 GyroSample():
 myRobot(1, 2), // initialize the sensors in initialization list
 gyro(1)
 {
 GetWatchdog().SetExpiration(0.1);
 }

 void Autonomous()
 {
 gyro.Reset();
 while (IsAutonomous())
 {
 GetWatchdog().Feed();
 float angle = gyro.GetAngle(); // get heading
 myRobot.Drive(-1.0, -angle * Kp); // turn to correct heading
 Wait(0.004);
 }
 myRobot.Drive(0.0, 0.0); // stop robot
 }
};

The angle is multiplied by Kp to scale it for the speed of the robot drive. This factor is called the
proportional constant or loop gain. Increasing Kp will cause the robot to correct more quickly (but too
high and it will oscillate). Decreasing the value will cause the robot correct more slowly (maybe never
getting back to the desired heading). This is proportional control.

Sensors HiTechnicCompass

Revision 0.75 – 24 January 2009 45

HiTechnicCompass
Use of the compass is somewhat tricky since it uses the earth’s magnetic field to determine the heading. 

The field is relatively weak and the compass can easily develop errors from other stronger magnetic 
fields from the motors and electronics on your robot. If you do decide to use a compass, be sure to 
locate it far away from interfering electronics and verify the readings on different headings. 

Each digital I/O module has only one I2C port to connect a sensor to. 

Example
Create a compass on the I2C port of the digital module plugged into slot 4. 

 HiTechnicCompass compass(4);
 compVal = compass.GetAngle();
 

Sensors Ultrasonic rangefinder

Revision 0.75 – 24 January 2009 46

Ultrasonic rangefinder
The WPI Robotics library supports the common Daventech SRF04 or Vex ultrasonic sensor. This sensor
has two transducers, a speaker that sends a burst of ultrasonic sound and a microphone that listens for the
sound to be reflected off of a nearby object. It uses two connections to the cRIO, one that initiates the
ping and the other that tells when the sound is received. The Ultrasonic object measures the time between
the transmission and the reception of the echo.

Figure 4: SRF04 Ultrasonic Rangefinder connections 

Both the Echo Pulse Output and the Trigger Pulse Input have to be connected to digital I/O ports on a
digital sidecar. When creating the Ultrasonic object, specify which ports it is connect to in the constructor:

 Ultrasonic ultra(ULTRASONIC_ECHO_PULSE_OUTPUT,
 ULTRASONIC_TRIGGER_PULSE_INPUT);

In this case ULTRASONIC_ECHO_PULSE_OUTPUT and ULTRASONIC_TRIGGER_PULSE_INPUT
are two constants that are defined to be the digital I/O port numbers.

For ultrasonic rangefinders that do not have these connections don’t use the Ultrasonic class. Instead use
the appropriate class for the sensor, for example an AnalogChannel object for an ultrasonic sensor that
returns the range as a voltage.

Example
Reads the range on an ultrasonic sensor connected to the output port ULTRASONIC_PING and the input 
port ULTRASONIC_ECHO. 

 Ultrasonic ultra(ULTRASONIC_PING, ULTRASONIC_ECHO);
 ultra.SetAutomaticMode(true);
 int range = ultra.GetRangeInches();

Sensors Counter Subsystem

Revision 0.75 – 24 January 2009 47

Counter Subsystem
The counters subsystem represent a very complete set of digital signal measurement tools for 

interfacing with many sensors that you can put on the robot. There are several parts to the counter 
subsystem. 

 

Figure 5: Schematic of the possible sources and counters in the Counter Subsystem in the cRIO.

Counters can be triggered by either Analog Triggers or Digital Inputs. The trigger source can either
control up/down counters (Counter objects), quadrature encoders (Encoder objects), or interrupt
generation.

Analog triggers count each time an analog signal goes outside or inside of a set range of voltages.

Sensors Counter Objects

Revision 0.75 – 24 January 2009 48

Counter Objects
Counter objects are extremely flexible elements that can count input from either a digital input signal or 

an analog trigger. They can also operate in a number of modes based on the type of input signal – some 
of which are used to implement other sensors in the WPI Robotics Library. 

• Gear‐tooth mode – enables up/down counting based on the width of an input pulse. This is used 
to implement the GearTooth object with direction sensing. 

• Semi‐period mode – counts the period of a portion of the input signal. This is used to measure 

the time of flight of the echo pulse in an ultrasonic sensor. 

• Normal mode – can count edges of a signal in either up counting or down counting directions 
based on the input selected. 

Sensors Encoders

Revision 0.75 – 24 January 2009 49

Encoders
Encoders are devices for measuring the rotation of a spinning shaft. Encoders are typically used to
measure the distance a wheel has turned that can be translated into robot distance across the floor.
Distance moved over a measured period of time represents the speed of the robot and is another common
measurement for encoders. There are several types of encoders supported in WPILib.

Simple encoders
Counter class

Single output encoders that provide a state change as the wheel is
turned. With a single output there is no way of detecting the direction of
rotation. The Innovation First VEX encoder and the index outputs of a
quadrature encoder are examples of this type of device.

Quadrature encoders
Encoder class

Quadrature encoders have two outputs typically referred to as the A
channel and the B channel. The B channel is out of phase from the A
channel. By measuring the relationship between the two inputs the
software can determine the direction of rotation.
The system looks for Rising Edge signals (ones where the input is
transitioning from 0 to 1) and falling edge signals. When a rising edge
is detected on the A channel, the B channel determines the direction. If
the encoder was turning clockwise, the B channel would be a low value
and if the encoder was turning counterclockwise then the B channel
would be a high value. The direction of rotation determines which
rising edge of the A channel is detected, the left edge or the right edge.
The Quadrature encoder class can look at all edges and give an
oversampled output with 4x accuracy.

Gear tooth sensor
GearTooth class

This is a device supplied by FIRST as part of the FRC robot standard
kit of parts. The gear tooth sensor is designed to monitor the rotation of
a sprocket or gear that is part of a drive system. It uses a Hall-effect
device to sense the teeth of the sprocket as they move past the sensor.

Table 4: Encoder types that are supported by WPILib 

These types of encoders are described in the following sections.

Figure 6: Quadrature encoder phase relationships between the two channels. 

Example

Sensors Geartooth Sensor

Revision 0.75 – 24 January 2009 50

Geartooth Sensor
Gear tooth sensors are designed to be mounted adjacent to spinning ferrous gear or sprocket teeth and
detect whenever a tooth passes. The gear tooth sensor is a Hall-effect device that uses a magnet and
solid state device that can measure changes in the field caused by the passing teeth.

Figure 7: A gear tooth sensor mounted on a VEX robot chassis measuring a metal gear rotation. Notice that there is a metal 
gear attached to the plastic gear in this picture. The gear tooth sensor needs a ferrous material passing by it to detect 
rotation. 

Example

Sensors Quadrature Encoders

Revision 0.75 – 24 January 2009 51

Quadrature Encoders
Background Information
Encoders are devices for measuring the rotation of a spinning shaft. Encoders are typically used to 
measure the distance a wheel has turned that can be translated into robot distance across the floor. 
Distance moved over a measured period of time represents the speed of the robot and is another 
common measurement for encoders. 
 
Encoders typically have a rotating disk with slots that spins in front of a photodetector. As the slots 
pass the detector, pulses are generated on the output. The rate at which the slots pass the detector 
indicates the rotational speed of the shaft and the number of slots that have passed the detector 
indicates the number of rotations (or distance). 
 
 

Figure 8: A Grayhill quadrature optical encoder. Note the two connectors, one for the A channel and one for the B channel. 

Some quadrature encoders have an extra index channel. This channel pulses once for each complete
revolution of the encoder shaft. If counting the index channel is required for the application it can be done
by connecting that channel to a simple Counter object which has no direction information.

Quadrature encoders are handled by the Encoder class. Using a quadrature encoder is done by simply
connecting the A and B channels to two digital I/O ports and assigning them in the constructor for
Encoder.

There are four QuadratureEncoder modules in the FPGA and 8 Counter modules that can operate as
quadrature encoders. One of the differences between the encoder and counter hardware is that encoders
can give an oversampled 4X count using all 4 edges of the input signal. Counters can either return a 1X or
2X result based on one of the input signals. If 1X or 2X is chosen in the Encoder constructor a Counter

Sensors Quadrature Encoders

Revision 0.75 – 24 January 2009 52

module is used with lower oversampling and if 4X (default) is chosen, then one of the four encoders is
used.

Example
 Encoder encoder(1, 2, true, k4X);

Where 1 and 2 are the port numbers for the two digital inputs and true tells the encoder to not invert the
counting direction. The sensed direction could depend on how the encoder is mounted relative to the shaft
being measured. The k4X makes sure that an encoder module from the FPGA is used and 4X accuracy is
obtained. To get the 4X value you should use the GetRaw() method on the encoder. The Get()
method will always return the normalized value by dividing the actual count obtained by the 1X,
2X, or 4X multiplier.

Sensors Analog Inputs

Revision 0.75 – 24 January 2009 53

Analog Inputs
The NI 9201 Analog to Digital module has a number of features not available on simpler controllers. It
will automatically sample the analog channels in a round-robin fashion providing an aggregate sample
rate of 500 ks/s (500,000 samples / second). These channels can be optionally oversampled and averaged
to provide the value that is used by the program. There are raw integer and floating point voltage outputs
available in addition to the averaged values.

The averaged value is computed by summing a specified number of samples and performing a simple
average, that is, dividing by the number of samples that are in the average. When the system averages a
number of samples the division results in a fractional part of the answer that is lost in producing the
integer valued result. That fraction represents how close the average values were to the next higher
integer. Oversampling is a technique where extra samples are summed, but not divided down to produce
the average. Suppose the system were oversampling by 16 times – that would mean that the values
returned were actually 16 times the average. Using the oversampled value gives additional precision in
the returned value.

Sensors Analog Inputs

Revision 0.75 – 24 January 2009 54

To set the number of oversampled and averaged values use the methods:

 void SetAverageBits(UINT32 bits);
 UINT32 GetAverageBits();
 void SetOversampleBits(UINT32 bits);
 UINT32 GetOversampleBits();

The number of averaged and oversampled values are always powers of 2 (number of bits of
oversampling/averaging). Therefore the number of oversampled or averaged values is 2bits, where bits is
passed to the methods: SetOversampleBits(bits) and SetAverageBits(bits). The actual rate
that values are produced from the analog input channel is reduced by the number of averaged and
oversampled values. For example, setting the number of oversampled bits to 4 and the average bits to 2
would reduce the number of delivered samples by 24+2, or 64.

The sample rate is fixed per analog I/O module, so all the channels on a given module must sample at the
same rate. However the averaging and oversampling rates can be changed for each channel. The WPI
Robotics Library will allow the sample rate to be changed once for a module. Changing it to a different
value will result in a runtime error being generated. The use of some sensors (currently just the Gyro) will
set the sample rate to a specific value for the module it is connected to.

Summary
• There is one sample rate per module. 

• The number of oversampled and averaged values is expressed as a power of 2. 

• The delivered sample rate is reduced by the oversample and average values. 

• There are 2 accumulators  connected to analog channels 1 and 2 of the first Analog Module. This 
means that only two devices (such as gyros) that use the accumulators can be connected to the 
cRIO, and they must be connected to channel 1 or 2 of Analog Module 1. 

• The returned analog value is 2n times larger than the actual value where n is the number of 
oversampled bits. Averaging doesn’t change the returned values, except to average them. 

Sensors Analog Triggers

Revision 0.75 – 24 January 2009 55

Analog Triggers

3 Point Average Reject Filter

 

Sensors Camera

Revision 0.75 – 24 January 2009 56

Camera
The camera provided in the 2009 kit is the Axis 206. The C camera API provides initialization, control
and image acquisition functionality. Image appearance properties are configured when the camera is
started. Camera sensor properties can be configured with a separate call to the camera, which should
occur before camera startup. The API also provides a way to update sensor properties using a text file on
the cRIO. PcVideoServer.cpp provides a C++ API that serves images to the dashboard running on a PC.
There is a sample dashboard application as part of the LabVIEW distribution that can interface with C
and C++ programs.

Camera task management
A stand-alone task, called FRC_Camera, is responsible for initializing the camera and acquiring images.
It continuously runs alongside your program acquiring images. It needs to be started in the robot code if
the camera is to be used. Normally the task is left running, but if desired it may be stopped. The activity
of image acquisition may also be controlled, for example if you only want to use the camera in
Autonomous mode, you may either call StopCameraTask() to end the task or call StopImageAcquisition()
to leave the task running but not reading images from the camera.

Camera sensor property configuration
ConfigureCamera () sends a string to the camera that updates sensor properties. GetCameraSetting ()
queries the camera sensor properties. The properties that may be updated are listed below along with their
out-of-the-box defaults:   

 brightness =50   
 whitebalance=auto 
 exposure=auto 
 exposurepriority=auto 
 colorlevel=99 
 sharpness=0 

 

GetImageSetting() queries the camera image appearance properties (see the Camera Initialization 

section below).  Examples of property configuration and query calls are below: 

// set a property
ConfigureCamera(“whitebalance=fixedfluor1”);

// query a sensorproperty
char responseString[1024]; // create string
bzero (responseString, 1024); // initialize string
if (GetCameraSetting(“whitebalance”,responseString)=-1) {
 printf(“no response from camera \n);
} else {printf(“whitebalance: %s \n”,responseString);}

// query an appearance property
if (GetImageSetting(“resolution”,responseString)=-1) {
 printf(“no response from camera \n);
} else {printf(“resolution: %s \n”,responseString);}

Sensors Camera

Revision 0.75 – 24 January 2009 57

The example program CameraDemo.cpp will configure properties in a variety of ways and take 
snapshots that may be FTP’d from the cRIO for analysis. 

 

Sensor property configuration using a text file
The utility ProcessFile() sets obtain camera sensor configuration specified from a file called 
"cameraConfig.txt" on the cRIO. ProcessFile() is called the first time with 0 lineNumber to get the 

number of lines to read. On subsequent calls each lineNumber is requested to get one camera 
parameter. There should be one property=value entry on each line, i.e. "exposure=auto” A sample 

cameraConfig.txt file is included with the CameraDemo project. This file must be placed on the root 
directory of the cRIO. Below is an example file: 

#######################
! lines starting with ! or # or comments
! this a sample configuration file
! only sensor properties may be set using this file
! – set appearance properties when StartCameraTask() is called
#######################
exposure=auto
colorlevel=99

Simple Camera initialization
StartCameraTask() initializes the camera to serve MJPEG images using the following camera appearance
defaults:   

 Frame Rate  = 10 frames / sec   
 Compression = 0 
 Resolution = 160x120 
 Rotation = 0 

  
if (StartCameraTask() == -1) {
 dprintf(LOG_ERROR, "Failed to spawn camera task; Error code %s",
 GetErrorText(GetLastError()));
}

Configurable Camera initialization
Image processing places a load on the cRIO which may or may not interfere with your other robot code.
Depending on needed speed and accuracy of image processing, it is useful to configure the camera for
performance. The highest frame rates may acquire images faster than your processing code can process
them, especially with higher resolution images. If your camera mount is upside down or sideways,
adjusting the Image Rotation in the start task command will compensate and images will look the same as
if the camera was mounted right side up. Once the camera is initialized, it begins saving images to an area
of memory accessible by other programs. The images are saved both in the raw (JPEG) format and in a
decoded format (Image) used by the NI image processing functions.  

 

Sensors Camera

Revision 0.75 – 24 January 2009 58

int frameRate = 15; // valid values 0 - 30
int compression = 0; // valid values 0 – 100
ImageSize resolution = k160x120; // k160x120, k320x240, k640x480
ImageRotation rot = ROT_180; // ROT_0, ROT_90, ROT_180, ROT_270

StartCameraTask(frameRate, compression, resolution, rot);

Image Acquisition
Images of types IMAQ_IMAGE_HSL, IMAQ_IMAGE_RGB, and IMAQ_IMAGE_U8 (gray scale) may
be acquired from the camera. To obtain an image for processing, first create the image structure and then
call GetImage() to get the image and the time that it was received from the camera:

double timestamp; // timestamp of image returned
Image* cameraImage = frcCreateImage(IMAQ_IMAGE_HSL);
if (!cameraImage) { printf("error: %s", GetErrorText(GetLastError()) };

if (!GetImage(cameraImage, ×tamp)) {
 printf("error: %s", GetErrorText(GetLastError()) };

GetImage() reads the most recent image, regardless of whether it has been previously accessed. Your
code can check the timestamp to see if it’s an image you already processed.

Alternatively, GetImageBlocking() will wait until a new image is available if the current one has
already been served. To prevent excessive blocking time, the call will return unsuccessfully if a new
image is not available in 0.5 second.

Image* cameraImage = frcCreateImage(IMAQ_IMAGE_HSL);
double timestamp; // timestamp of image returned
double lastImageTimestamp; // timestamp of last image, to ensure image is new

int success = GetImageBlocking(cameraImage, ×tamp, lastImageTimestamp);

Camera Metrics
Various camera instrumentation counters used internally may be accessed that may be useful for camera
performance analysis and error detection. Here is a list of the metrics: 

CAM_STARTS, CAM_STOPS, CAM_NUM_IMAGE, CAM_BUFFERS_WRITTEN, 
CAM_BLOCKING_COUNT, CAM_SOCKET_OPEN, CAM_SOCKET_INIT_ATTEMPTS, 

CAM_BLOCKING_TIMEOUT, CAM_GETIMAGE_SUCCESS, CAM_GETIMAGE_FAILURE, 
CAM_STALE_IMAGE, CAM_GETIMAGE_BEFORE_INIT, CAM_GETIMAGE_BEFORE_AVAILABLE, 
CAM_READ_JPEG_FAILURE, CAM_PC_SOCKET_OPEN, CAM_PC_SENDIMGAGE_SUCCESS, 

CAM_PC_SENDIMAGE_FAILURE, CAM_PID_SIGNAL_ERR, CAM_BAD_IMAGE_SIZE, 
CAM_HEADER_ERROR 

The following example call gets the number of images served by the camera: 

Sensors Camera

Revision 0.75 – 24 January 2009 59

int result = GetCameraMetric(CAM_NUM_IMAGE);

Images to PC
The class PCVideoServer, when instantiated, creates a separate task that sends images to the PC for
display on a dashboard application. The sample program DashboardDemo shows an example of use. 

StartCameraTask(); // Initialize the camera
PCVideoServer pc; // The constructor starts the image server task
pc.Stop(); // Stop image server task
pc.Start(); // Restart task and serve images again

To use this code with the LabVIEW dashboard, the PC must be configured as IP address 10.x.x.6 to
correspond with the cRIO address 10.x.x.2.

 

Controlling Motors Camera

Revision 0.75 – 24 January 2009 60

Controlling Motors
The WPI Robotics library has extensive support for motor control. There are a number of classes that
represent different types of speed controls and servos. The library is designed to support non-PWM motor
controllers that will be available in the future. The WPI Robotics Library currently supports two classes
of speed controllers, PWM-based motor controllers (Jaguars or Victors) and servos.

Motor speed controller speed values floating point numbers that range from -1.0 to +1.0 where -1.0 is full
speed in one direction, and 1.0 is full speed in the other direction. 0.0 represents stopped. Motors can also
be set to disabled, where the signal is no longer sent to the speed controller.

There are a number of motor controlling classes as part of this group:

Type Usage

PWM Base class for all the pwm-based speed controllers and servos

Victor Speed controller supplied by Innovation First, commonly used in robotics competitions,
with a 10ms update rate.

Jaguar Advanced speed controller used for 2009 and future FRC competitions with a 5ms
update rate.

Servo Class designed to control small hobby servos as typically supplied in the FIRST kit of
parts.

RobotDrive General purpose class for controlling a robot drive train with either 2 or 4 drive motors.
It provides high level operations like turning. It does this by controlling all the robot
drive motors in a coordinated way. It’s useful for both autonomous and teleoperated
driving.

Controlling Motors PWM

Revision 0.75 – 24 January 2009 61

PWM
The PWM class is the base class for devices that operate on PWM signals and is the connection to the
PWM signal generation hardware in the cRIO. It is not intended to be used directly on a speed controller
or servo. The PWM class has shared code for Victor, Jaguar, and Servo subclasses which set the update
rate, deadband elimination, and profile shaping of the output signal.

Controlling Motors Victor

Revision 0.75 – 24 January 2009 62

Victor
The Victor class represents the Victor speed controllers provided by Innovation First. They have a
minimum 10ms update period and only take a PWM control signal. The minimum and maximum values
that will drive the Victor speed control vary from one unit to the next. You can fine tune the values for a
particular speed controller by using a simple program that steps the values up and down in single raw unit
increments. You need the following values:

Value Description

Max The maximum value where the motors stop changing speed and the light on the
Victor goes to full green.

DeadbandMax The value where the motor just stops operating.

Center The value that is in the center of the deadband that turns off the motors.

DeadbandMin The value where the motor just starts running in the opposite direction.

Min The minimum value (highest speed in opposite direction) where the motors stop
changing speed.

 

With these values, call the SetBounds method on the created Victor object. 

 void SetBounds(INT32 max,
 INT32 deadbandMax,
 INT32 center,
 INT32 deadbandMin,
 INT32 min);
 

Example

Controlling Motors Jaguar

Revision 0.75 – 24 January 2009 63

Jaguar
The Jaguar class supports the Luminary Micro Jaguar speed controller. It has an update period of slightly
greater than 5ms and currently uses only PWM output signals. In the future the more sophisticated Jaguar
speed controllers might have other methods for control of its many extended functions.

The input values for the Jaguar range from -1.0 to 1.0 for full speed in either direction with 0 representing
stopped.

Use of limit switches
TODO 

Example
TODO 

Controlling Motors Servo

Revision 0.75 – 24 January 2009 64

Servo
The Servo class supports the Hitechnic servos supplied by FIRST. They have a 20ms update period and
are controlled by PWM output signals.

The input values for the Servo range from 0.0 to 1.0 for full rotation in one direction to full rotation in the
opposite direction. There is also a method to set the servo angle based on the (currently) fixed minimum
and maximum angle values.

Example 1
The following code fragment rotates a servo through its full range in 10 steps:

 Servo servo(3); // create a servo on PWM port 3 on the first module

 float servoRange = servo.GetMaxAngle() - servo.GetMinAngle();

 for (float angle = servo.GetMinAngle(); // step through range of angles
 angle < servo.GetMaxAngle();
 angle += servoRange / 10.0)
 {
 servo.SetAngle(angle); // set servo to angle
 Wait(1.0); // wait 1 second
 }

Example 2
The following code fragment pans a servo back and forth every 3 seconds

 #include “BaeUtilities.h”

 panInit(); // optional parameters can adjust pan speed
 bool targetFound = false;

 while (!targetFound) {
 panForTarget(servo, 0.0); // sinStart from -1 to +1
 // code to identify target
 }

Jerry Morrison � 1/11/09 3:07 PM
Comment: What's sinStart? 

Controlling Motors RobotDrive

Revision 0.75 – 24 January 2009 65

RobotDrive
The RobotDrive class is designed to simplify the operation of the drive motors based on a model of the
drive train configuration. The idea is to describe the layout of the motors. Then the class can generate all
the speed values to operate the motors for different situations. For cases that fit the model it provides a
significant simplification to standard driving code. For more complex cases that aren’t directly supported
by the RobotDrive class it may be subclassed to add additional features or not used at all.

To use it, create a RobotDrive object specifying the left and right Jaguar motor controllers on the robot:

 RobotDrive drive(1, 2); // left, right motors on ports 1,2
Or
 RobotDrive drive(1, 2, 3, 4); // four motor drive configuration

This sets up the class for a 2 motor configuration or a 4 motor configuration. There are additional
methods that can be called to modify the behavior of the setup.

Example
SetInvertedMotor(kFrontLeftMotor, true);

This sets the operation of the front left motor to be inverted. This might be necessary depending on the
gearing of your drive train.

Once set up, there are methods that can help with driving the robot either from the Driver Station controls
or through programmed operation:

Method Description
Drive(speed, turn) Designed to take speed and turn values ranging from -1.0 to 1.0.

The speed values set the robot overall drive speed, positive
values forward and negative values backwards. The turn value
tries to specify constant radius turns for any drive speed. The
negative values represent left turns and the positive values
represent right turns.

TankDrive(leftStick, rightStick) Takes two joysticks and controls the robot with tank steering
using the y-axis of each joystick. There are also methods that
allow you to specify which axis is used from each stick.

ArcadeDrive(stick) Takes a joystick and controls the robot with arcade (single stick)
steering using the y-axis of the joystick for forward/backward
speed and the x-axis of the joystick for turns. There are also
other methods that allow you to specify different joystick axes.

HolonomicDrive(magnitude,
direction, rotation)

Takes floating point values, the first two are a direction vector
the robot should drive in. The third parameter, rotation, is the
independent rate of rotation while the robot is driving. This is
intended for robots with 4 Mecanum wheels independently
controlled.

SetLeftRightMotorSpeeds(leftSpeed,
rightSpeed)

Takes two values for the left and right motor speeds. As with all
the other methods, this will control the motors as defined by the
constructor.

Controlling Motors RobotDrive

Revision 0.75 – 24 January 2009 66

The Drive method of the RobotDrive class is designed to support feedback based driving. Suppose you
want the robot to drive in a straight line despite physical variations in its parts and external forces. There
are a number of strategies, but two examples are using GearTooth sensors or a gyro. In either case an
error value is generated that tells how far from straight the robot is currently tracking. This error value
(positive for one direction and negative for the other) can be scaled and used directly with the turn
argument of the Drive method. This causes the robot to turn back to straight with a correction that is
proportional to the error – the larger the error, the greater the turn.

By default the RobotDrive class assumes that Jaguar speed controllers are used. To use Victor speed
controllers, create the Victor objects then call the RobotDrive constructor passing it pointers or references
to the Victor objects rather than port numbers.

Example
TODO 

Controlling Pneumatics RobotDrive

Revision 0.75 – 24 January 2009 67

Controlling Pneumatics
These classes make it easier to use pneumatics in your robot. 

Class  Purpose 

Solenoid  Can control pneumatic actuators directly without the need for an additional relay. (In 

the past a Spike relay was required along with a digital output port to control a 
pneumatics component.) 

Compressor  Keeps the pneumatics system charged by using a pressure switch and software to turn 
the compressor on and off as needed. 

 

Controlling Pneumatics Compressor

Revision 0.75 – 24 January 2009 68

Compressor
The Compressor class is designed to operate the FRC supplied compressor on the robot. A Compressor
object is constructed with 2 input/output ports:

• The Digital output port connected to the Spike relay that is controlling the power to the
compressor. (A digital output or Solenoid module port alone doesn’t supply enough current to
operator the compressor.)

• The Digital input port connected to the pressure switch that is monitoring the accumulator
pressure.

The Compressor class will automatically create a task that runs in the background twice a second and
turns the compressor on or off based on the pressure switch value. If the system pressure is above the high
set point, the compressor turns off. If the pressure is below the low set point, the compressor turns on.

To use the Compressor class create an instance of the Compressor object and Start() it. This is
typically done in the constructor for your Robot Program. Once started, it will continue to run on its own
with no further programming necessary. If you do have an application where the compressor should be
turned off, possibly during some particular phase of the game play, you can stop and restart the
compressor using the Stop() and Start() methods.

The compressor class will create instances of the DigitalInput and Relay objects internally to read the
pressure switch and operate the Spike relay.

Example
Suppose you had a compressor and a Spike relay connected to Relay port 2 and the pressure switch
connected to digital input port 4. Both of these ports are connected to the primary digital input module.
You could create and start the compressor running in the constructor of your RobotBase derived object
using the following 2 lines of code.

 Compressor *c = new Compressor(4, 2);
 c->Start();

Note: The variable c is a pointer to a compressor object and the
object is allocated using the new operator. If it were allocated as a local
variable in the constructor, at the end of the constructor function its
local variables would be deallocated and the compressor would stop
operating.

That’s all that is required to enable the compressor to operate for the duration of the robot program.

Controlling Pneumatics Compressor

Revision 0.75 – 24 January 2009 69

C++ Object Life Span
You need the Compressor object to last the entire game. If you allocate it with new, the best practice is to
store the pointer in a member variable then delete it in the Robot’s destructor.

class RobotDemo : public SimpleRobot
{
 Compressor *m_compressor;

public:
 RobotDemo()
 {
 m_compressor = new Compressor(4, 2);
 m_compressor->Start();
 }

 ~RobotDemo()
 {
 delete m_compressor;
 }
}

Alternatively, declare it as a member object then initialize and Start() it in the Robot’s constructor. In
this case you need to use the constructor’s “initialization list” to initialize the Compressor object. The
C++ compiler will quietly give RobotDemo a destructor that deletes the Compressor object.

class RobotDemo : public SimpleRobot
{
 Compressor m_compressor;

public:
 RobotDemo() : m_compressor(4, 2)
 {
 m_compressor.Start();
 }
}

Controlling Pneumatics Solenoid (Pneumatics)

Revision 0.75 – 24 January 2009 70

Solenoid (Pneumatics)
The Solenoid object controls the outputs of the NI 9472 Digital Output Module. It is designed to apply an
input voltage to any of the 8 outputs. Each output can provide up to 1A of current. The module is
designed to operate 12v pneumatic solenoids used on FIRST robots. This makes the use of relays
unnecessary for pneumatic solenoids.

Note: The NI 9472 Digital Output Module does not provide enough
current to operate a motor or the compressor so relays connected to
Digital Sidecar digital outputs will still be required for those
applications.

The port numbers on the Solenoid class range from 1-8 as printed on the pneumatics breakout board.

Note: The NI 9472 indicator lights are numbered 0-7 for the 8 ports
which is different numbering than used by the class or the pneumatic
bumper case silkscreening.

Example
Setting the output values of the Solenoid objects to true or false will turn the outputs on and off
respectively. The following code fragment will create 8 Solenoid objects, initialize each to true (on), and
then turn them off, one per second. Then it turns them each back on, one per second, and deletes the
objects.

 Solenoid *s[8];
 for (int i = 0; i < 8; i++)
 s[i] = new Solenoid(i + 1); // allocate the Solenoid objects
 for (int i = 0; i < 8; i++)
 {
 s[i]->Set(true); // turn them all on
 }
 Wait(1.0);
 for (int i = 0; i < 8; i++)
 {
 s[i]->Set(false); // turn them each off in turn
 Wait(1.0);
 }
 for (int i = 0; i < 8; i++)
 {
 s[i]->Set(true); // turn them back on in turn
 Wait(1.0);
 delete s[i]; // delete the objects
 }

You can observe the operation of the Solenoid class by looking at the indicator lights on the 9472 module.

Vision / Image Processing Solenoid (Pneumatics)

Revision 0.75 – 24 January 2009 71

Vision / Image Processing
Access to National Instrument’s nivison library for machine vision enables automated image processing
for color identification, tracking and analysis. The VisionAPI.cpp file provides open source C wrappers
to a subset of the proprietary library. The full specification for the simplified FRC Vision programming
interface is in the FRC Vision API Specification document, which is in the
WindRiver\docs\extensions\FRC directory of the Wind River installation with this document. The FRC
Vision interface also includes high level calls for color tracking (TrackingAPI.cpp). Programmers may
also call directly into the low level library by including nivision.h and using calls documented in the NI
Vision for LabWindows/CVI User Manual.

Naming conventions for the vision processing wrappers are slightly different from the rest of WPILib. C
routines prefixed with “imaq” belong to NI’s LabVIEW/CVI vision library. Routines prefixed with “frc”
are simplified interfaces to the vision library provided by BAE Systems for FIRST Robotics Competition
use.

Sample programs provided include SimpleTracker, which in autonomous mode tracks a color and drives
toward it, VisionServoDemo, which also tracks a color with a two-servo gimbal. VisionDemo
demonstrates other capabilities including storing a JPEG image to the cRIO, and DashboardDemo sends
images to the PC Dashboard application.

Image files may be read and written to the cRIO non-volatile memory. File types supported are PNG,
JPEG, JPEG2000, TIFF, AIDB, and BMP. Images may also be obtained from the Axis 206 camera.
Using the FRC Vision API, images may be copied, cropped, or scaled larger/smaller. Intensity
measurements functions available include calculating a histogram for color or intensity and obtaining
values by pixel. Contrast may be improved by equalizing the image. Specific color planes may be
extracted. Thresholding and filtering based on color and intensity characteristics are used to separate
particles that meet specified criteria. These particles may then be analyzed to find the characteristics.    Jerry Morrison � 1/13/09 1:46 AM

Comment: this doc should define "particles" 

Vision / Image Processing Color Tracking

Revision 0.75 – 24 January 2009 72

Color Tracking
High level calls provide color tracking capability without having to call directly into the image processing
routines. You can either specify a hue range and light setting, or pick specific ranges for hue, saturation
and luminance for target detection. 

Example 1 using defaults
Call GetTrackingData() with a color and type of lighting to obtain default ranges that can be used in the
call to FindColor(). The ParticleAnalysisReport returned by FindColor() specifies details of the largest
particle of the targeted color.

 
 TrackingThreshold tdata = GetTrackingData(BLUE, FLUORESCENT);
 ParticleAnalysisReport par;

 if (FindColor(IMAQ_HSL, &tdata.hue, &tdata.saturation,
 &tdata.luminance, &par)
 {
 printf("color found at x = %i, y = %i",
 par.center_mass_x_normalized, par.center_mass_y_normalized);
 printf("color as percent of image: %d",
 par.particleToImagePercent);
 }

The normalized center of mass of the target color is a range from –1.0 to 1.0, regardless of image size.
This value may be used to drive the robot toward a target.

Example 2 using specified ranges
To manage your own values for the color and light ranges, you simply create Range objects: 

 Range hue, sat, lum;

 hue.minValue = 140; // Hue
 hue.maxValue = 155;
 sat.minValue = 100; // Saturation
 sat.maxValue = 255;
 lum.minValue = 40; // Luminance
 lum.maxValue = 255;

 FindColor(IMAQ_HSL, &hue, &sat, &lum, &par);

Tracking also works using the Red, Green, Blue (RGB) color space, however HSL gives more consistent
results for a given target. 

 

Jerry Morrison � 1/14/09 12:20 AM

Jerry Morrison � 1/14/09 12:22 AM

Comment: If it's a float from ‐1.0 to 1.0, then the 
%i printf conversion won't work. 

Comment: What are the supported ranges for H, 
S, and L? 

Vision / Image Processing Color Tracking

Revision 0.75 – 24 January 2009 73

Example 3 using return values
Here is an example program that enables the robot to drive towards a green target. When it is too close 
or too far, the robot stops driving. Steering like this is quite simple as shown in the example. 

The following declarations in the class are used for the example: 

RobotDrive *myRobot
Range greenHue, greenSat, greenLum;
 

This is the initialization of the RobotDrive object, the camera and the colors for tracking the target. It 
would typically go in the RobotBase derived constructor. 

if (StartCameraTask() == -1) {
 printf("Failed to spawn camera task; Error code %s",
 GetErrorText(GetLastError()));
}
myRobot = new RobotDrive(1, 2);

// values for tracking a target - may need tweaking in your environment
greenHue.minValue = 65; greenHue.maxValue = 80;
greenSat.minValue = 100; greenSat.maxValue = 255;
greenLum.minValue = 100; greenLum.maxValue = 255;
 

Here is the code that actually drives the robot in the autonomous period. The code checks if the color 
was found in the scene and that it was not too big (close) and not too small (far). If it is in the limits, then 

the robot is driven forward full speed (1.0), and with a turn rate determined by the 
center_mass_x_normalized value of the particle analysis report. 

The center_mass_x_normalized value is 0.0 if the object is in the center of the frame; otherwise it 

varies between ‐1.0 and 1.0 depending on how far off to the sides it is. That is the same range as the 
Drive method uses for the turn value. If the robot is correcting in the wrong direction then simply negate 

the turn value. 

while (IsAutonomous())
{
 if (FindColor(IMAQ_HSL, &greenHue, &greenSat, &greenLum, &par)
 && par.particleToImagePercent < MAX_PARTICLE_TO_IMAGE_PERCENT
 && par.particleToImagePercent > MIN_PARTICLE_TO_IMAGE_PERCENT)
 {
 myRobot->Drive(1.0, (float)par.center_mass_x_normalized);
 }
 else myRobot->Drive(0.0, 0.0);
 Wait(0.05);
}
myRobot->Drive(0.0, 0.0);
 

 

Vision / Image Processing Color Tracking

Revision 0.75 – 24 January 2009 74

Example 4 two color tracking
An example of tracking a two color target is in the demo project TwoColorTrackDemo. The file
Target.cpp in this project provides an API for searching for this type of target. The example below first
creates tracking data:

// PINK
 sprintf (td1.name, "PINK");
 td1.hue.minValue = 220;
 td1.hue.maxValue = 255;
 td1.saturation.minValue = 75;
 td1.saturation.maxValue = 255;
 td1.luminance.minValue = 85;
 td1.luminance.maxValue = 255;
// GREEN
 sprintf (td2.name, "GREEN");
 td2.hue.minValue = 55;
 td2.hue.maxValue = 125;
 td2.saturation.minValue = 58;
 td2.saturation.maxValue = 255;
 td2.luminance.minValue = 92;
 td2.luminance.maxValue = 255;

 

Call FindTwoColors() with the two sets of tracking data and an orientation (ABOVE, BELOW, RIGHT,
LEFT) to obtain two ParticleAnalysisReports which have details of a two-color target.

Note: The FindTwoColors API code is in the demo project, not in the WPILib project 

// find a two color target
if (FindTwoColors(td1, td2, ABOVE, &par1, &par) {
 // Average the two particle centers to get center x & y of combined target
 horizontalDestination = (par1.center_mass_x_normalized +
 par2.center_mass_x_normalized) / 2;
 verticalDestination = (par1.center_mass_y_normalized +
 par2.center_mass_y_normalized) / 2;
{
 

To obtain the center of the combined target, average the x and y values. As before, use the normalized
values to work within a range of -1.0 to +1.0. Use the center_mass_x and center_mass_y values if the
exact pixel position is desired.

Several parameters for adjusting the search criteria are provided in the Target.h header file (again,
provided in the TwoColorTrackDemo project, not WPILib). The initial settings for all of these paramters
are very open, to maximize target recognition. Depending on your test results you may want to adjust
these, but remember that the lighting conditions at the event may give different results. These parameters
include:

• FRC_MINIMUM_PIXELS_FOR_TARGET – (default 5) Make this larger to prevent extra
processing of very small targets.

Vision / Image Processing Color Tracking

Revision 0.75 – 24 January 2009 75

• FRC_ALIGNMENT_SCALE – (default 3.0) scaling factor to determine alignment. To ensure
one target is exactly above the other, use a smaller number. However, light shining directly on the
target causes significant variation, so this parameter is best left fairly high.

• FRC_MAX_IMAGE_SEPARATION (default 20) Number of pixels that can exist separating the

two colors. Best number varies with image resolution. It would normally be very low but is set to
a higher number to allow for glare or incomplete recognition of the color.

• FRC_SIZE_FACTOR (default 3) Size difference between the two particles. With this setting, one
particle can be three times the size of the other.

• FRC_MAX_HITS (default 10) Number of particles of each color to analyze. Normally the target
would be found in the first (largest) particles. Reduce this to increase performance, Increase it to
maximize the chance of detecting a target on the other side of the field.

• FRC_COLOR_TO_IMAGE_PERCENT (default 0.001) One color particle must be at least this
percent of the image. 

Concurrency Color Tracking

Revision 0.75 – 24 January 2009 76

Concurrency
VxWorks is the operation system that is running inside the cRIO and providing services to the running
robot programs that you write. It provides many operations to support concurrency, or the simultaneous
execution of multiple pieces of the program called tasks. Each task is scheduled to run by VxWorks
based on its priority and availability of resources it might be waiting on. For example, if one task calls
Wait(time), then other tasks can run until the time runs out on the waiting task.

WPILib provides some classes to help simplify writing programs that do multitasking. However it should
be stressed that writing multi-tasking code represents one of the most challenging aspects of
programming. It may look simple; but there are many complications that could give your program
unexpected and hard to reproduce errors.

Concurrency Creating tasks

Revision 0.75 – 24 January 2009 77

Creating tasks
In your program you may decide to subdivide the work into multiple concurrently running tasks. For 

example, you may have a requirement to operate a ball loading mechanism independently of a ball 
shooter and the driving code in your robot. Each of these functions can be split out into its own task to 
simplify the overall design of the robot code. 

Concurrency Synchronized and Critical Regions

Revision 0.75 – 24 January 2009 78

Synchronized and Critical Regions
A critical region is an area of code that is always executed under mutual exclusion, i.e. only one task can
be executing this code at any time. When multiple tasks try to manipulate a single group of shared data
they have to be prevented from executing simultaneously otherwise a race condition is possible. Imagine
two tasks trying to update an array at the same time. Task A reads the count of elements in the array, then
task B changes the count, then task A tries to do something based on the (now incorrect) value of the
count it previously read. This situation is called a race condition and represents one of the most difficult
to find programming bugs since the bug only is visible when the timing of multiple tasks is just right (or
wrong). It’s called a “race” because the result depends on which task finishes first. It’s difficult to find
because the bug symptoms happen inconsistently.

Typically semaphores are used to ensure only one task has access to the shared data at a time.
Semaphores are operating system structures that control access to a shared resource. VxWorks provides
two operations on semaphores, take and give. When you take a semaphore, the code pauses until the
semaphore isn’t in use by another task, then the operating system marks it in use, but your code can now
run. You give the semaphore when you are finished using the shared data. It now lets the next task trying
to take the semaphore run.

Suppose that a function operates on some shared data. Understanding about the bad things that can
happen with race conditions, you take a semaphore at the start of the function and give it at the end. Now
inside the function, the data is protected from inappropriate shared use (that is, assuming that all functions
that accesses this shared data take the semaphore first). Now someone else looks at the code and decides
to change it and puts a return in the middle of the function, not noticing the take and give. The semaphore
is taken, but the corresponding give operation never happened. That means that any other task waiting on
that semaphore will wait forever. This condition is called deadlock.

Example
The Synchronized object is a simple wrapper around semaphores to avoid this kind of deadlock. Here is
an example of how it is used:

{
 Synchronized s(semaphore);
 // access shared code here
 if (condition) return;
 // more code here
}
At the start of the block a Synchronized object is allocated. This takes the semaphore. When the block
exits, the object is automatically freed and its destructor is called. Inside the destructor the semaphore is
given. Notice that the destructor will be called no matter how the block is exited. Even if a return is used
inside the block, the destructor is guaranteed to be called by the C++ compiler. This eliminates a common
cause of deadlock.

Concurrency Synchronized and Critical Regions

Revision 0.75 – 24 January 2009 79

To make the code even more readable, there are two macros defined by WPILib and used like this:

CRITICAL_REGION(semaphore)
{
 // access shared code here
 if (condition) return;
 // more code here
}
END_REGION;

These macros just make the code more readable, but the expanded code is identical to the previous
example.

There are other ways to deadlock. In particular, what happens if Task A takes semaphore X and calls a
function that takes semaphore Y, while Task B takes the two semaphores in the reverse order, Y then X?
This is another kind of race. If sometime A takes X, then B takes Y, then A will wait forever trying to
take Y while B waits forever trying to take X.

The simplest solution to this problem is to only use leaf semaphores, that is, never take a semaphore while
holding another semaphore. Just take the semaphore, access the shared data quickly, don’t call any
functions that might take other semaphores, and give back the semaphore. A more complex solution is to
make all code take semaphores in the same order, X then Y.

System Architecture Synchronized and Critical Regions

Revision 0.75 – 24 January 2009 80

System Architecture
This section describes how the system is put together and how the libraries interact with the base
hardware. It should give you better insight as to how the whole system works and its capabilities.

Note: This is a work in progress, the pictures will be cleaned up and
explanations will be soon added. We wanted to make this available to
you in its raw form rather than leaving it out all together.

System Architecture Digital Sources

Revision 0.75 – 24 January 2009 81

Digital Sources

Digital Filter

Getting Feedback from the Drivers Station Digital Sources

Revision 0.75 – 24 January 2009 82

Getting Feedback from the Drivers Station
The driver station is constantly communicating with the robot controller. You can read the driver station 
values of the attached joysticks, digital inputs, and analog inputs, and write to the digital outputs. The 
DriverStation class has methods for reading and writing everything connected to it including joysticks. 

There is another object, Joystick, that provides a more convenient set of methods for dealing with 
joysticks and other HID controllers connected to the USB ports. 

Getting data from the digital and analog ports
Building a driver station with just joysticks is simple and easy to do, especially with the range of HID USB 
devices supported by the driver station. Custom interfaces can be constructed using the digital and 
analog I/O on the driver station. Switches can be connected to the digital inputs, the digital outputs can 

drive indicators, and the analog inputs can read various sensors, like potentiometers. Here are some 
examples of custom interfaces that are possible: 

• Set of switches to set various autonomous modes and options 

• Potentiometers on a model of an arm to control the actual arm on the robot 

• Rotary switches with a different resistor at each position to generate unique voltage to add 
effectively add more switch inputs 

• Three pushbutton switches to set an elevator to one of three heights automatically 

The range of possibilities is limited to your imagination. These custom interfaces often give the robot 

faster control than is available from a standard joystick or controller. 

You can read/write the driver station analog and digital I/O using the following DriverStation methods: 

float GetAnalogIn(UINT32 channel)  Read an analog input value connected to port 
channel 

bool GetDigitalIn(UINT32 channel)  Read a digital input value connected to port channel 
void SetDigitalOut(UINT32 channel, bool value)  Write a digital output value on port channel 
bool GetDigitalOut(UINT32 channel)  Read the currently set digital output value on port 

channel 
Note: The driver station does not have pull‐up or pull‐down resistors on
any of the digital inputs. This means that unconnected inputs will have a

random value. You must use external pull‐up or pull‐down resistors on
digital inputs to get repeatable results.

Other DriverStation features
The DriverStation is constantly communicating with the Field Management System (FMS) and provides 
additional status information through that connection: 

Getting Feedback from the Drivers Station Digital Sources

Revision 0.75 – 24 January 2009 83

bool IsDisabled()  Robot state 
bool IsAutonomous();  Field state (autonomous vs. teleop) 
bool IsOperatorControl();  Field state 
UINT32 GetPacketNumber();  Sequence number of the current driver station received data packet 
Alliance GetAlliance();  Alliance (red, blue) for the match 
UINT32 GetLocation();  Starting field position of the robot (1, 2, or 3)  
float GetBatteryVoltage();  Battery voltage on the robot 
 

Getting Feedback from the Drivers Station Joysticks

Revision 0.75 – 24 January 2009 84

Joysticks
The standard input device supported by the WPI Robotics Library is a USB joystick.  The 2009 kit joystick 

comes equipped with eleven digital input buttons and three analog axes, and interfaces with the robot 
through the Joystick class. 

The Joystick class itself supports five analog and twelve digital inputs – which allows for joysticks with 
more axis control or buttons. 

The joystick must be connected to one of the four available USB ports on the driver station.  When the 

station is turned on, the joysticks must be at their center position, as the startup routine will read 
whatever position they are in as center.  The constructor takes either the port number the joystick is 
plugged into, followed by the number of axes and then the number of buttons, or just the port number 

from the driver's station.  The former is primarily for use in sub‐classing (For example, to create a class 
or a non‐kit joystick), and the latter for a standard kit joystick. 

Joystick driveJoy(1);
Joystick opJoy(2,5,8);
 

The above example would create a default joystick called driveJoy on USB port 1 of the driver station, 

and something like a Microsoft Sidewinder (which has five analog axises, i.e. x, y, throttle, twist, and the 
hat, and eight buttons) – which would be a good candidate for a subclass of Joystick. 

There are two methods to access the axes of the joystick.  Each input axis is labeled as the X, Y, Z, 
Throttle, or Twist axis.  For the kit joystick, the applicable axes are labeled correctly; a non‐kit joystick 

will require testing to determine which axes correspond to which degrees of freedom. 

Each of these axes has an associated accessor; the X axis from driveJoy in the above example could be 
read by calling driveJoy.GetX(); the twist and throttle axes are accessed by driveJoy.GetTwist() and 
driveJoy.GetThrottle(), respectively. 

Alternatively, the axes can be accessed via the the GetAxis() and GetRawAxis() methods.  GetAxis() takes 

an AxisType – kXAxis, kYAxis, kZAxis, kTwistAxis, or kThrottleAxis – and returns that axis's value.  
GetRawAxis() takes an a number (1‐6) – and returns the value of the axis associated with that number – 
these numbers are reconfigurable and generally used with custom control systems, since the other two 

methods reliably return the same data for a given axis. 

There are three ways to access the top button (defaulted to button 2) and trigger (button 1).  The first is 
to use their respective accessor methods – GetTop() and GetTrigger(), which return a true or false value 

based on whether the button is currently being pressed.  A second method is to call GetButton(), which 
takes a ButtonType – which can be either kTopButton or kTriggerButton.  The last method is one that 
allows access to the state of every button on the joystick – GetRawButton().  This method takes a 

number corresponding to a button on the joystick (see diagram below), and return the state of that 
button. 

Getting Feedback from the Drivers Station Joysticks

Revision 0.75 – 24 January 2009 85

In addition to the standard method of accessing the Cartesian coordinates (x and y axes) of the joystick's 
position, WPILib also has the ability to return the position of the joystick as a magnitude and direction.  

To access the magnitude, the GetMagnitude() method can be called, and to access the direction, either 
GetDirectionDegrees() or GetDirectionRadians() can be called.  

Example
 Joystick driveJoy(1);
 Jaguar leftControl(1);
 Jaguar rightControl(2);

 if(driveJoy.GetTrigger()) //If the trigger is pressed
 {
 //Have the left motor get input from Y axis
 //and the right motor get input from X axis
 leftControl.Set(driveJoy.GetY());
 rightControl.Set(driveJoy.GetAxis(kXAxis));
 }
 else if(driveJoy.GetRawButton(2)) //If button number 2 pressed (top)
 {
 //Have both right and left motors get input
 //from the throttle axis
 leftControl.Set(driveJoy.GetThrottle());
 rightControl.Set(driveJoy.GetAxis(kThrottleAxis));
 }
 //If button number 4 is pressed
 else if(driveJoy.GetRawButton(4)) //If button number 4 is pressed
 {
 //Have the left motor get input from the
 //magnitude of the joystick's position
 leftControl.Set(driveJoy.GetMagnitude());
 }

Advanced Programming Topics Joysticks

Revision 0.75 – 24 January 2009 86

Advanced Programming Topics

Advanced Programming Topics Using Subversion with Workbench

Revision 0.75 – 24 January 2009 87

Using Subversion with Workbench
Subversion is a free source code management tool that is designed to track changes to a project as it is
developed. You can save each revision of your code in a repository, go back to a previous revision, and
compare revisions to see what changed. You should install a Subversion client if:

• You need access to the WPI Robotics Library source code installed on a Subversion server

• You have your own Subversion server for working with your team projects

There are a number of clients that will integrate with Workbench, but we’ve been using Subclipse.

Installing the Subclipse client into Workbench
Subclipse can be downloaded from the internet and installed into Workbench. The following instructions
describe how to do it.

On the help menu, select
“Software updates”,
then “Find and Install”.

Select “Search for new
features to install and
click Next.

Advanced Programming Topics Using Subversion with Workbench

Revision 0.75 – 24 January 2009 88

Click, “New Remote
Site…” to add the
Subclipse update site.

Enter the information
for the update site and
click OK.

Advanced Programming Topics Using Subversion with Workbench

Revision 0.75 – 24 January 2009 89

Now you should see
Subclipse added to the
list of “Sites to include
in search:”. Click
“Finish”.

Select the “JavaHL
Adapter” and
“Subclipse” from the list
of features to install.

Advanced Programming Topics Using Subversion with Workbench

Revision 0.75 – 24 January 2009 90

Accept the license and
click “Next”.

Click “Finish” and the
install will start. If
asked, select “Install
All” in the Verification
window. You should
allow Workbench to
restart after finishing.

Advanced Programming Topics Getting the WPILib Source Code

Revision 0.75 – 24 January 2009 91

Getting the WPILib Source Code
The WPI Robotics Library source code is installed on a Subversion server. To get it requires having a
subversion client installed in your copy of Workbench. See Installing the Subclipse client into Workbench
for instructions on how to set it up.

Note: These examples show urls to an internal WPI SourceForge server and it is not available for teams
to use. There will be a new server available soon, and we will post the details at that time. For now, the
source code is available on the WPILib C/C++ update page. Look at the FIRST web site for a link to that
page.

Importing the WPI Robotics Library into your workspace
To get the source code requires setting up a “Repository location” then importing the code. The following
steps show the process.

Right-click in the “Project
Explorer” window in Workbench.
Select “Import…”

Choose “Checkout Projects from
SVN” and click next.

Advanced Programming Topics Getting the WPILib Source Code

Revision 0.75 – 24 January 2009 92

Select “Create a new repository
location” and click Next.

Enter the URL: The URL will be 
announced as soon as the 
Subversion server is up and 
running. This is only an example 
and cannot be used except by WPI 
students and faculty.

Advanced Programming Topics Getting the WPILib Source Code

Revision 0.75 – 24 January 2009 93

Choose the WPILib folder from
the “Select Folder” window. The
window on your screen will have a
different list of files, but still
choose WPILib.
This is an example and the actual
details will be announced when the
Subversion server is running.

Advanced Programming Topics Getting the WPILib Source Code

Revision 0.75 – 24 January 2009 94

Check out the code as a project in
the Workspace by leaving all the
default options and clicking
“Finish”.
If you are asked for a username
and password, it is your username
for SourceForge. Checking the
“Remember password” box will
make this easier since it will ask
multiple times.

Using the WPI Robotics Library source code in your projects
The sample projects provided by FIRST use a library file (WPILib.a) and header files from the
Workbench install. If you intend to modify or debug the source copy of the library you just imported, the
project settings have to change to refer to that copy of the library instead.

Note: Before doing these steps you must have built the WPILib project once so that the WPILib.a target
file has been generated.

Right-click on the project name in the “Project Explorer” pane in Workbench and select “Properties”.

In the project properties
window, select “Build
Properties”. Here you can see
all the options that
Workbench will use to build
your project.

Advanced Programming Topics Getting the WPILib Source Code

Revision 0.75 – 24 January 2009 95

Select the “Build Paths” tab
to use the downloaded
WPILib include files to your
project rather than the
installed version.

Select the Libraries tab and
select the WPILib.a library
file from the downloaded
WPILib project instead of the
version preinstalled in
Workbench.

Advanced Programming Topics Getting the WPILib Source Code

Revision 0.75 – 24 January 2009 96

Note: to build WPILib you must install SlikSVN from
http://www.sliksvn.com/en/download. Once downloaded and installed the
builds will run without errors. SlikSVN is a command line interface to
Subversion that our build system uses for tracking library versions.

Now if you rebuild your project it will use the imported version of the WPI Robotics Library rather than
the preinstalled version.

Advanced Programming Topics Replacing WPI Robotics Library parts

Revision 0.75 – 24 January 2009 97

Replacing WPI Robotics Library parts
You can replace any component of the WPI Robotics Library with your own version of that component
without having to replace the entire library. When your projects are built, the last step is Linking. This
two step process creates a single executable .OUT file by:

1. Combining all the modules (object files) from your project together into the .OUT file

2. Finding all the unresolved pieces such as classes referenced from WPILib and adding those
pieces to your .OUT file executable.

Only the pieces of WPILib that are unresolved after step 1 are included from the library and that’s the key
to substituting your own version of classes.

Suppose you want to use your own version of the Encoder class because you had some extra features you
wanted to add. To use your version rather than the WPILib version simply:

1. Get the WPILib version of the file (.cpp and .h) files from the WPILib source code and add them
to your project.

2. Make whatever modifications you would like to.

3. Rebuild your project. The library version of the Encoder objects will be included with your set of
object modules, so the linker won’t take the ones in WPILib.

Advanced Programming Topics Interrupts

Revision 0.75 – 24 January 2009 98

Interrupts
Example
Below is a sample program that generates a square wave on a digital output port that is connected to a 
digital input port. An interrupt handler is set up on the input port to count the number of cycles. 

static int interruptCounter = 0;

// The interrupt handler that counts number of square wave cycles
static void tiHandler(tNIRIO_u32 interruptAssertedMask, void *param)
{
 interruptCounter++;
}

void InterruptTestHandler(void)
{
 // create the two digital ports (Output and Input)
 DigitalOutput digOut(CROSS_CONNECT_A_PORT1);
 DigitalInput digIn(CROSS_CONNECT_A_PORT2);

 // create the counter that will also count square waves
 Counter counter(&digIn);

 // initialize the digital output to 0
 digOut.Set(0);

 // start the counter counting at 0
 counter.Reset();
 counter.Start();

 // register and enable the interrupt handler
 digIn.RequestInterrupts(tiHandler);
 digIn.EnableInterrupts();

 // count 5 times
 while (counter.Get() < 5)
 {
 Wait(1.0);
 digOut.Set(1);
 Wait(1.0);
 digOut.Set(0);
 }

 // verify correct operation
 if (interruptCounter == 5 && counter.Get() == 5)
 printf("Test passed!\n");

 // free resources
 digIn.DisableInterrupts();
 digIn.CancelInterrupts();
}
END_TEST(TestInterruptHandler)
 

Advanced Programming Topics Creating your own speed controllers

Revision 0.75 – 24 January 2009 99

Creating your own speed controllers

Advanced Programming Topics PID Programming

Revision 0.75 – 24 January 2009 100

PID Programming
PID controllers are a powerful and widely used implementation of closed loop control. The PIDController
class allows for a PID control loop to be created easily and runs the control loop in a separate thread at
consistent intervals. The PIDController automatically checks a PIDSource for feedback and writes to a
PIDOutput every loop. Sensors suitable for use with PIDController in WPILib are already subclasses of
PIDSource. Additional sensors and custom feedback methods are supported through creating new
subclasses of PIDSource. Jaguars and Victors are already configured as subclasses of PIDOutput, and
custom outputs may also be created by sub-classing PIDOutput.

The following example shows how to create a PIDController to set the position of a turret to a position
related to the x-axis on a joystick using a single motor on a Jaguar and a potentiometer for angle
feedback. As the joystick X value changes, the motor should drive to a position related to that new value.
The PIDController class will ensure that the motion is smooth and stops at the right point.

A potentiometer that turns with the turret will provide feedback of the turret angle. The potentiometer is
connected to an analog input and will return values ranging from 0-5V from full clockwise to full
counterclockwise motion of the turret. The joystick X-axis returns values from -1.0 to 1.0 for full left to
full right. We need to scale the joystick values to match the 0-5V values from the potentiometer. This can
be done with the following expression:

(turretStick.GetX() + 1.0) * 2.5

The scaled value can then be used to change the setpoint of the control loop as the joystick is moved.

The 0.1, 0.001, and 0.0 values are the Proportional, Integral, and Differential coefficients respectively.
The AnalogChannel object is already a subclass of PIDSource and returns the voltage as the control value
and the Jaguar object is a subclass of PIDOutput.

 Joystick turretStick(1);
 Jaguar turretMotor(1);
 AnalogChannel turretPot(1);
 PIDController turretControl(0.1, 0.001, 0.0, &turretPot, &turretMotor);

 turretControl.Enable(); // start calculating PIDOutput values

 while(IsOperator())
 {
 turretControl.SetSetpoint((turretStick.GetX() + 1.0) * 2.5);
 Wait(.02); // wait for new joystick values
 }

 

The PIDController object will automatically (in the background): 

• Read the PIDSource object, in this case the turretPot analog input 

Advanced Programming Topics PID Programming

Revision 0.75 – 24 January 2009 101

• Compute the new result value 

• Set the PIDOutput object, in this case the turretMotor 

This will be repeated periodically in the background by the PIDController. The default repeat rate is 
50ms although this can be changed by adding a parameter with the time to the end of the PIDController 

argument list. See the reference document for details. 

 

Advanced Programming Topics Using the serial port

Revision 0.75 – 24 January 2009 102

Using the serial port

Advanced Programming Topics Relays

Revision 0.75 – 24 January 2009 103

Relays
The cRIO provides the connections necessary to wire IFI spikes via the relay outputs on the digital 
sidecar.  The sidecar provides a total of sixteen outputs, eight forward and eight reverse.  The forward 

output signal is sent over the pin farthest from the edge of the sidecar, which is labeled as output A, 
while the reverse signal output is sent over the center pin, which is labeled output B.  The final pin is a 
ground connection. 

When a Relay object is created in WPILib, its constructor takes a channel and direction, or a slot, channel 

and direction.  The slot is the slot number that the digital module is plugged into (the digital module 
being what the digital sidecar is connected to on the cRIO) – this parameter is not needed if only the first 
digital module is being used.  The channel is the number of the connection on being used on the digital 

sidecar.  The direction can be kBothDirections (two direction solenoid), kForwardOnly (uses only the 
forward pin), or kReverseOnly, which uses only the reverse pin.  If a value is not input for direction, it 
defaults to kBothDirections.  This determines which methods in the Relay class can be used with a 

particular instance of the object. 

Included in the Relay class: 

Method Description
Void Set(Value value) This method sets the the state of the relay – Valid inputs:

All Directions: kOff – turns off the Relay
kForwardOnly or kReverseOnly: kOn – turns on forward or
reverse of relay, depending on direction
kForwardOnly: kForward – set the relay to forward
kReverseOnly: kReverse – set the relay to reverse

Void SetDirection(Direction direction) Sets the direction of the relay – Valid inputs:
kBothDirections: Allows the relay to use both the forward and
reverse pins on the channel
kForwardOnly: Allows relay to use only the forward signal
pin
kReverseOnly: Allows relay to use only the reverse signal pin

 

Example
Relay m_relay(1);
Relay m_relay2(2,Relay::kForwardOnly);

m_relay.SetDirection(Relay::kReverseOnly);
m_relay.Set(Relay::kOn);
m_relay2.Set(Relay::kForward);
m_relay.Set(Relay::kOff);

Advanced Programming Topics Relays

Revision 0.75 – 24 January 2009 104

In this example, m_relay is initialized to be on channel 1.  Since no direction is specified, the direction is 
set to the default value of kBothDirections.  m_relay2 is initialized to channel 2, with a direction of 

kForwardOnly.  In the following line, m_relay is set to the direction of kReverseOnly, and is then turned 
on, which results in the reverse output being turned on.  m_relay2 is then set to forward – since it is a 
forward only relay, this has the same effect as setting it to on.  After that, m_relay is turned off, a 

command that turns off any active pins on the channel, regardless of direction.  

 

Advanced Programming Topics Customizing analog sampling

Revision 0.75 – 24 January 2009 105

Customizing analog sampling

Advanced Programming Topics Using I2C

Revision 0.75 – 24 January 2009 106

Using I2C

C++ Tips Using I2C

Revision 0.75 – 24 January 2009 107

C++ Tips

Creating an application in WorkBench Using I2C

Revision 0.75 – 24 January 2009 108

Creating an application in WorkBench

Contributing to the WPI Robotics Library Using I2C

Revision 0.75 – 24 January 2009 109

Contributing to the WPI Robotics Library

Glossary Using I2C

Revision 0.75 – 24 January 2009 110

Glossary
Concurrency

cRIO

deadlock

particle

quadrature encoder

race condition

semaphore

task

VxWorks

Index Using I2C

Revision 0.75 – 24 January 2009 111

Index
Accelerometer, 42 

Analog Inputs, 54 

Analog Triggers, 56 

C Programs, 11 

Camera, 57 

Compass, 45 

Compressor, 69 

Conventions, 34 

Counter, 48 

Dashboard 

Images, 60 

Digital I/O, 39 

Digital Inputs, 40 

Digital Output, 41 

Driver Station, 83 

Encoders, 50 

Examples 

C Program, 12 

Color Tracking, 73, 74, 75 

Gyro, 43 

Image Processing, 72 

Interrupts, 99 

Servo, 65, 66 

Simple, 8, 27 

Solenoid, 71 

Synchronized Object, 79 

Ultrasonic Rangefinder, 46 

Geartooth Sensor, 51 

Gyro, 43 

Image Processing, 72 

Color Tracking, 73 

Using FRC Vision API, 72 

Using NI Vision API, 72 

IterativeRobot, 31, 33 

Jaguar, 64 

Motor Controllers, 61 

Jaguar, 64 

PWM, 62 

Victor, 63 

Multitasking, 77 

Objects, 9 

Pneumatics, 68 

Quadrature Encoders, 52 

Robot Base Classes, 31 

RobotBase, 31, 36 

RobotDrive, 66 

Semaphores, 79 

sensors, 38 

Index Using I2C

Revision 0.75 – 24 January 2009 112

Servo, 65 

SimpleRobot, 8, 31, 32 

Solenoid. See Pneumatics 

Subversion, 88 

Accessing Source Code, 92 

Installing Subclipse, 88 

Ultrasonic rangefinder, 46 

Version Control. See Subversion 

Vision. See Image Processing 

VxWorks 

Concurrency, 77 

Creating Tasks, 78 

Critical Regions, 79 

watchdog timer, 28, 37 

Workbench, 13 

Building Projects, 20 

Creating Remote System, 14 

Creating Robot Programs, 18 

Debug output to PC, 25 

Debugging, 22 

Deploying Programs, 26 

Downloading Projects, 21 

Troubleshooting, 24 

WPILib 

Replacing Source Files, 98 

Using Source Files, 95 

 

